IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3334-d186464.html
   My bibliography  Save this article

Optimal Design of a High-Speed Single-Phase Flux Reversal Motor for Vacuum Cleaners

Author

Listed:
  • Vladimir Dmitrievskii

    (Department of Electrical Engineering and Electric Technology Systems, Ural Federal University, Yekaterinburg 620002, Russia
    EMACH LLC, Yekaterinburg 620002, Russia)

  • Vladimir Prakht

    (Department of Electrical Engineering and Electric Technology Systems, Ural Federal University, Yekaterinburg 620002, Russia
    EMACH LLC, Yekaterinburg 620002, Russia)

  • Vadim Kazakbaev

    (Department of Electrical Engineering and Electric Technology Systems, Ural Federal University, Yekaterinburg 620002, Russia
    EMACH LLC, Yekaterinburg 620002, Russia)

  • Sergey Sarapulov

    (Department of Electrical Engineering and Electric Technology Systems, Ural Federal University, Yekaterinburg 620002, Russia)

Abstract

This paper describes the design of a single-phase high-speed flux reversal motor (FRM) for use in a domestic application (vacuum cleaner). This machine has a simple and reliable rotor structure, which is a significant advantage for high-speed applications. An FRM design in which the inner stator surface is entirely used allows it to decrease its volume and increase its efficiency. The mathematical modeling, based on the finite element method, and the optimal design of the high-speed single-phase FRM are described. The criterion of optimization and the selection of a proper optimization algorithm are discussed. Since the finite element method introduces a small but quasi-random error due to round-off accumulation and choosing the mesh, etc., the Nelder-Mead method, not requiring the derivatives calculation, was chosen for the optimization. The target parameter of the optimization is built for the motor efficiency when operating at different loads. Calculations show that the presented approach provides increasing motor efficiency during the optimization, particularly at underload.

Suggested Citation

  • Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev & Sergey Sarapulov, 2018. "Optimal Design of a High-Speed Single-Phase Flux Reversal Motor for Vacuum Cleaners," Energies, MDPI, vol. 11(12), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3334-:d:186464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles Audet & Christophe Tribes, 2018. "Mesh-based Nelder–Mead algorithm for inequality constrained optimization," Computational Optimization and Applications, Springer, vol. 71(2), pages 331-352, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev, 2021. "Optimal Design of a High-Speed Flux Reversal Motor with Bonded Rare-Earth Permanent Magnets," Mathematics, MDPI, vol. 9(3), pages 1-11, January.
    2. Anton Dianov, 2022. "Instant Closing of Permanent Magnet Synchronous Motor Control Systems at Open-Loop Start," Sustainability, MDPI, vol. 14(19), pages 1-17, October.
    3. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev, 2020. "Optimal Design of Gearless Flux-Switching Generator with Ferrite Permanent Magnets," Mathematics, MDPI, vol. 8(2), pages 1-14, February.
    4. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev, 2019. "Design Optimization of a Permanent-Magnet Flux-Switching Generator for Direct-Drive Wind Turbines," Energies, MDPI, vol. 12(19), pages 1-15, September.
    5. Libing Jing & Kun Yang & Yuting Gao & Zhangtao Kui & Zeyu Min, 2022. "Analysis and Optimization of a Novel Flux Reversal Machine with Auxiliary Teeth," Energies, MDPI, vol. 15(23), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Prakht & Vladimir Dmitrievskii & Vadim Kazakbaev & Ekaterina Andriushchenko, 2021. "Comparison of Flux-Switching and Interior Permanent Magnet Synchronous Generators for Direct-Driven Wind Applications Based on Nelder–Mead Optimal Designing," Mathematics, MDPI, vol. 9(7), pages 1-16, March.
    2. Neshat, Mehdi & Mirjalili, Seyedali & Sergiienko, Nataliia Y. & Esmaeilzadeh, Soheil & Amini, Erfan & Heydari, Azim & Garcia, Davide Astiaso, 2022. "Layout optimisation of offshore wave energy converters using a novel multi-swarm cooperative algorithm with backtracking strategy: A case study from coasts of Australia," Energy, Elsevier, vol. 239(PE).
    3. Charles Audet & Edward Hallé-Hannan & Sébastien Le Digabel, 2023. "A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables," SN Operations Research Forum, Springer, vol. 4(1), pages 1-37, March.
    4. Charles Audet & Jean Bigeon & Romain Couderc, 2021. "Combining Cross-Entropy and MADS Methods for Inequality Constrained Global Optimization," SN Operations Research Forum, Springer, vol. 2(3), pages 1-26, September.
    5. Vladimir Dmitrievskii & Vladimir Prakht & Vadim Kazakbaev, 2019. "Design Optimization of a Permanent-Magnet Flux-Switching Generator for Direct-Drive Wind Turbines," Energies, MDPI, vol. 12(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3334-:d:186464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.