IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3073-d181325.html
   My bibliography  Save this article

Voltage Balance Control Analysis of Three-Level Boost DC-DC Converters: Theoretical Analysis and DSP-Based Real Time Implementation

Author

Listed:
  • Driss Oulad-Abbou

    (Laboratory of Electric Systems and Telecommunications, Cadi-Ayyad University, BP 549, Av Abdelkarim Elkhattabi, Gueliz, 4000 Marrakesh, Morocco
    Laboratory of Innovative Technologies, University of Picardie Jules Verne, 80025 Amiens, France)

  • Said Doubabi

    (Laboratory of Electric Systems and Telecommunications, Cadi-Ayyad University, BP 549, Av Abdelkarim Elkhattabi, Gueliz, 4000 Marrakesh, Morocco)

  • Ahmed Rachid

    (Laboratory of Innovative Technologies, University of Picardie Jules Verne, 80025 Amiens, France)

Abstract

In this paper, a step-by-step description to get a unique three-level boost DC–DC converter (TLBDC) (DC—direct current) small signal model is first presented and validated through simulations and experiments. This model allows for overcoming the usage of two sub-models as in the conventional modeling approach. Based on this model, voltage balance (VB) controllers are designed and VB control analysis is presented. Two VB controllers, namely Proportional Integral (PI) and Fuzzy, were analyzed when the VB control was applied on both TLBDC switches or only one. According to the obtained simulation and experimental results, the proposed model gives an accurate approximation in dynamic, small perturbations around an operating point and steady state modes. Moreover, it has been shown that VB is achieved in a reduced time when VB control is applied on both the TLBDC’s switches. Furthermore, the Fuzzy controller performs better than PI controller for VB control.

Suggested Citation

  • Driss Oulad-Abbou & Said Doubabi & Ahmed Rachid, 2018. "Voltage Balance Control Analysis of Three-Level Boost DC-DC Converters: Theoretical Analysis and DSP-Based Real Time Implementation," Energies, MDPI, vol. 11(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3073-:d:181325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3073/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3073/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
    2. Yun Zhang & Jilong Shi & Chuanzhi Fu & Wei Zhang & Ping Wang & Jing Li & Mark Sumner, 2018. "An Enhanced Hybrid Switching-Frequency Modulation Strategy for Fuel Cell Vehicle Three-Level DC-DC Converters with Quasi-Z Source," Energies, MDPI, vol. 11(5), pages 1-16, April.
    3. Peter Zajec & Mitja Nemec, 2018. "Theoretical and Experimental Investigation of the Voltage Ripple across Flying Capacitors in the Interleaved Buck Converter with Extended Duty Cycle," Energies, MDPI, vol. 11(4), pages 1-13, April.
    4. Yueping Sun & Li Ma & Dean Zhao & Shihong Ding, 2018. "A Compound Controller Design for a Buck Converter," Energies, MDPI, vol. 11(9), pages 1-17, September.
    5. García-Triviño, Pablo & Torreglosa, Juan P. & Fernández-Ramírez, Luis M. & Jurado, Francisco, 2016. "Control and operation of power sources in a medium-voltage direct-current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system," Energy, Elsevier, vol. 115(P1), pages 38-48.
    6. Goli, P. & Shireen, W., 2014. "PV powered smart charging station for PHEVs," Renewable Energy, Elsevier, vol. 66(C), pages 280-287.
    7. Hossain, M.Z. & Rahim, N.A. & Selvaraj, Jeyraj a/l, 2018. "Recent progress and development on power DC-DC converter topology, control, design and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 205-230.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    2. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    3. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Elio Chiodo & Maurizio Fantauzzi & Davide Lauria & Fabio Mottola, 2018. "A Probabilistic Approach for the Optimal Sizing of Storage Devices to Increase the Penetration of Plug-in Electric Vehicles in Direct Current Networks," Energies, MDPI, vol. 11(5), pages 1-20, May.
    5. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    6. Bhatti, Abdul Rauf & Salam, Zainal, 2018. "A rule-based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic-grid system," Renewable Energy, Elsevier, vol. 125(C), pages 384-400.
    7. Nunes, Pedro & Figueiredo, Raquel & Brito, Miguel C., 2016. "The use of parking lots to solar-charge electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 679-693.
    8. González, L.G. & Siavichay, E. & Espinoza, J.L., 2019. "Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 309-318.
    9. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    10. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    11. Mpho J. Lencwe & Shyama P. Chowdhury & Thomas O. Olwal, 2018. "A Multi-Stage Approach to a Hybrid Lead Acid Battery and Supercapacitor System for Transport Vehicles," Energies, MDPI, vol. 11(11), pages 1-16, October.
    12. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    13. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    14. Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
    15. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    16. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    17. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    18. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    19. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    20. Tan, Kang Miao & Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Mansor, Muhamad & Teh, Jiashen & Guerrero, Josep M., 2023. "Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3073-:d:181325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.