IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2943-d178886.html
   My bibliography  Save this article

MHD Mixed Convection in a Lid-Driven Cavity with a Bottom Trapezoidal Body: Two-Phase Nanofluid Model

Author

Listed:
  • Muhammad Adil Sadiq

    (Department of Mathematics, DCC-KFUPM Box 5084, Dhahran 31261, Saudi Arabia)

  • Ammar I. Alsabery

    (Refrigeration & Air-conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf 54001, Iraq
    School of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Ishak Hashim

    (School of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

Abstract

The current work examines the effects of a bottom trapezoidal solid body and a magnetic field on mixed convection in a lid-driven square cavity. The Al 2 O 3 -water nanofluid used is assumed to obey Buongiorno’s two-phase model. An isothermal heater is placed on the bottom base of the trapezoid solid body, while the cavity’s vertical walls are kept cold at temperature T c . The top moving wall and the remaining portions of the cavity’s bottom wall are thermally insulated. The Galerkin weighted residual finite element method is employed to solve the dimensionless governing equations. The parameters of interest are the Richardson number ( 0.01 ≤ R i ≤ 100 ), Hartmann number ( 0 ≤ H a ≤ 50 ) , nanoparticle volume fraction ( 0 ≤ ϕ ≤ 0.04 ), and the length of the bottom base of the trapezoidal solid body. The obtained results show that increasing the Richardson number or decreasing the Hartmann number tends to increase the heat transfer rate. In addition, both the thermophoresis and Brownian motion greatly improve the convection heat transfer. It is believed that the current work is a good contribution to many engineering applications such as building design, thermal management of solar energy systems, electronics and heat exchange.

Suggested Citation

  • Muhammad Adil Sadiq & Ammar I. Alsabery & Ishak Hashim, 2018. "MHD Mixed Convection in a Lid-Driven Cavity with a Bottom Trapezoidal Body: Two-Phase Nanofluid Model," Energies, MDPI, vol. 11(11), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2943-:d:178886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ammar I. Alsabery & Tahar Tayebi & Ali J. Chamkha & Ishak Hashim, 2018. "Effects of Non-Homogeneous Nanofluid Model on Natural Convection in a Square Cavity in the Presence of Conducting Solid Block and Corner Heater," Energies, MDPI, vol. 11(10), pages 1-27, September.
    2. Sheremet, M.A. & Pop, I., 2015. "Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno's mathematical model," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 792-808.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obai Younis & Sameh E. Ahmed & Aissa Abderrahmane & Abdulaziz Alenazi & Ahmed M. Hassan, 2023. "Hydrothermal Mixed Convection in a Split-Lid-Driven Triangular Cavity Suspended by NEPCM," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    2. Nguyen, Truong Khang & Usman, Muhammad & Sheikholeslami, M. & Haq, Rizwan Ul & Shafee, Ahmad & Jilani, Abdul Khader & Tlili, I., 2020. "Numerical analysis of MHD flow and nanoparticle migration within a permeable space containing Non-equilibrium model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amzad Hossain & Md. Mamun Molla & Md. Kamrujjaman & Muhammad Mohebujjaman & Suvash C. Saha, 2023. "MHD Mixed Convection of Non-Newtonian Bingham Nanofluid in a Wavy Enclosure with Temperature-Dependent Thermophysical Properties: A Sensitivity Analysis by Response Surface Methodology," Energies, MDPI, vol. 16(11), pages 1-39, May.
    2. Al-Rashed, Abdullah A.A.A., 2019. "Optimization of heat transfer and pressure drop of nano-antifreeze using statistical method of response surface methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 531-542.
    3. Pal, S.K. & Bhattacharyya, S. & Pop, I., 2019. "A numerical study on non-homogeneous model for the conjugate-mixed convection of a Cu-water nanofluid in an enclosure with thick wavy wall," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 219-234.
    4. Sheikholeslami, M. & Vajravelu, K., 2017. "Nanofluid flow and heat transfer in a cavity with variable magnetic field," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 272-282.
    5. Hatem Gasmi & Umair Khan & Aurang Zaib & Anuar Ishak & Sayed M. Eldin & Zehba Raizah, 2022. "Analysis of Mixed Convection on Two-Phase Nanofluid Flow Past a Vertical Plate in Brinkman-Extended Darcy Porous Medium with Nield Conditions," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    6. Mohamed Sannad & Ahmed Kadhim Hussein & Awatef Abidi & Raad Z. Homod & Uddhaba Biswal & Bagh Ali & Lioua Kolsi & Obai Younis, 2022. "Numerical Study of MHD Natural Convection inside a Cubical Cavity Loaded with Copper-Water Nanofluid by Using a Non-Homogeneous Dynamic Mathematical Model," Mathematics, MDPI, vol. 10(12), pages 1-28, June.
    7. Mohamed F. El-Amin & Usama Khaled & Abderrahmane Beroual, 2018. "Numerical Study of the Magnetic Field Effect on Ferromagnetic Fluid Flow and Heat Transfer in a Square Porous Cavity," Energies, MDPI, vol. 11(11), pages 1-21, November.
    8. Husain, Shahid & Adil, Md & Arqam, Mohammad & Shabani, Bahman, 2021. "A review on the thermal performance of natural convection in vertical annulus and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Goutam Saha & Ahmed A.Y. Al-Waaly & Manosh C. Paul & Suvash C. Saha, 2023. "Heat Transfer in Cavities: Configurative Systematic Review," Energies, MDPI, vol. 16(5), pages 1-53, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2943-:d:178886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.