IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2776-d176041.html
   My bibliography  Save this article

Unbalanced Current Sharing Control in Islanded Low Voltage Microgrids

Author

Listed:
  • Foad Najafi

    (Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA)

  • Mohsen Hamzeh

    (Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 198396113, Iran)

  • Matthias Fripp

    (Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA)

Abstract

This paper reports a new control strategy to improve sharing of unbalanced currents in islanded LV microgrids. This technique provides fast and effective sharing of positive-, negative- and zero-sequence currents, and is the first example of zero-sequence current sharing in the literature. The controllers are designed in the stationary frame. The control structure consists of four loops: (1) the current controller; (2) the voltage controller; (3) the droop controller and the (4) negative and zero sequence current controllers. The output current is considered unknown for the controller and is added to the control system as a disturbance. The proposed controller features a high gain in fundamental and harmonic frequencies, hence a good voltage quality is obtained in the presence of unbalanced and nonlinear loads. To this aim, a proportional-resonant (PR) controller is adopted as the current controller. By using a multi-resonant controller as current controller, a unified control structure is obtained which is suitable for both grid-connected and islanded modes. The voltage controller is designed using a resonant controller so that the voltage can have low VUF and THD in the presence of unbalanced and nonlinear loads. Furthermore, in this paper, the droop method is applied to the control structure to share real and reactive powers. Simulation studies show that the conventional droop method cannot share the oscillatory part of the output power that is due to the presence of unbalanced loads in the microgrid. This paper relies on using zero and negative sequence virtual impedance controller to share the oscillatory part of output power. By using zero-sequence virtual impedance controller (ZSVIC) and negative-sequence virtual impedance controller (NSVIC), the zero and negative sequence currents in the microgrid are controlled and shared effectively. By compensating zero- and negative-sequence currents locally, the flow of these currents in the microgrid is minimized, and the overall power quality of the islanded LV microgrid is improved.

Suggested Citation

  • Foad Najafi & Mohsen Hamzeh & Matthias Fripp, 2018. "Unbalanced Current Sharing Control in Islanded Low Voltage Microgrids," Energies, MDPI, vol. 11(10), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2776-:d:176041
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2776/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 428-439.
    2. Carpinelli, G. & Mottola, F. & Proto, D. & Varilone, P., 2017. "Minimizing unbalances in low-voltage microgrids: Optimal scheduling of distributed resources," Applied Energy, Elsevier, vol. 191(C), pages 170-182.
    3. Li, Bei & Roche, Robin & Miraoui, Abdellatif, 2017. "Microgrid sizing with combined evolutionary algorithm and MILP unit commitment," Applied Energy, Elsevier, vol. 188(C), pages 547-562.
    4. Abdelaziz, Morad M.A. & El-Saadany, E.F., 2015. "Economic droop parameter selection for autonomous microgrids including wind turbines," Renewable Energy, Elsevier, vol. 82(C), pages 108-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(19), pages 1-16, September.
    2. Gianfranco Chicco & Andrea Mazza, 2019. "100 Years of Symmetrical Components," Energies, MDPI, vol. 12(3), pages 1-20, January.
    3. Hyun Shin & Sang Heon Chae & Eel-Hwan Kim, 2021. "Unbalanced Current Reduction Method of Microgrid Based on Power Conversion System Operation," Energies, MDPI, vol. 14(13), pages 1-16, June.
    4. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method," Energies, MDPI, vol. 15(19), pages 1-17, September.
    5. Mohammad Alathamneh & Haneen Ghanayem & R. M. Nelms, 2022. "Bidirectional Power Control for a Three-Phase Grid-Connected Inverter under Unbalanced Grid Conditions Using a Proportional-Resonant and a Modified Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(24), pages 1-23, December.
    6. Ning Wang & Weisheng Xu & Zhiyu Xu & Weihui Shao, 2018. "Peer-to-Peer Energy Trading among Microgrids with Multidimensional Willingness," Energies, MDPI, vol. 11(12), pages 1-22, November.
    7. Galo Guarderas & Airan Frances & Dionisio Ramirez & Rafael Asensi & Javier Uceda, 2019. "Blackbox Large-Signal Modeling of Grid-Connected DC-AC Electronic Power Converters," Energies, MDPI, vol. 12(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soheil Mohseni & Alan C. Brent, 2022. "A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    2. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    3. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    4. Huang, Chunjun & Zong, Yi & You, Shi & Træholt, Chresten & Zheng, Yi & Wang, Jiawei & Zheng, Zixuan & Xiao, Xianyong, 2023. "Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities," Applied Energy, Elsevier, vol. 335(C).
    5. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    6. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    7. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    8. Rozmysław Mieński & Przemysław Urbanek & Irena Wasiak, 2021. "Using Energy Storage Inverters of Prosumer Installations for Voltage Control in Low-Voltage Distribution Networks," Energies, MDPI, vol. 14(4), pages 1-21, February.
    9. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    10. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    11. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    12. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    13. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    14. Bouzid, Allal M. & Guerrero, Josep M. & Cheriti, Ahmed & Bouhamida, Mohamed & Sicard, Pierre & Benghanem, Mustapha, 2015. "A survey on control of electric power distributed generation systems for microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 751-766.
    15. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    16. Hongshan Zhao & Junyang Xu & Kunyu Xu & Jingjie Sun & Yufeng Wang, 2022. "Optimal Allocation Method of Source and Storage Capacity of PV-Hydrogen Zero Carbon Emission Microgrid Considering the Usage Cost of Energy Storage Equipment," Energies, MDPI, vol. 15(13), pages 1-18, July.
    17. Nemati, Mohsen & Braun, Martin & Tenbohlen, Stefan, 2018. "Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming," Applied Energy, Elsevier, vol. 210(C), pages 944-963.
    18. Ramitha Dissanayake & Akila Wijethunge & Janaka Wijayakulasooriya & Janaka Ekanayake, 2022. "Optimizing PV-Hosting Capacity with the Integrated Employment of Dynamic Line Rating and Voltage Regulation," Energies, MDPI, vol. 15(22), pages 1-19, November.
    19. Wilke, Christoph & Bensmann, Astrid & Martin, Stefan & Utz, Annika & Hanke-Rauschenbach, Richard, 2018. "Optimal design of a district energy system including supply for fuel cell electric vehicles," Applied Energy, Elsevier, vol. 226(C), pages 129-144.
    20. Aharon, Ilan & Shmilovitz, Doron & Kuperman, Alon, 2017. "Multimode power processing interface for fuel cell range extender in battery powered vehicle," Applied Energy, Elsevier, vol. 204(C), pages 572-581.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2776-:d:176041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.