IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2767-d175876.html
   My bibliography  Save this article

Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 2: Resins and Asphaltenes

Author

Listed:
  • Jandyson M. Santos

    (ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, 13083-970 São Paulo, Brazil
    Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany)

  • Alessandro Vetere

    (Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany)

  • Alberto Wisniewski

    (Department of Chemistry, Federal University of Sergipe-UFS, São Cristóvão, 49100-000 Sergipe, Brazil)

  • Marcos N. Eberlin

    (ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, 13083-970 São Paulo, Brazil
    Mackenzie Presbiterian University, 01302-907 São Paulo, SP, Brazil)

  • Wolfgang Schrader

    (Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany)

Abstract

The combination of fractionation methods for crude oils, such as saturate, aromatic, resin and asphaltene (SARA) fractionation, in combination with analysis by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been used for reducing the complexity and improving the characterization of crude oils. We have used the FT-ICR MS techniques in conjunction with electrospray ionization (ESI(±)) and atmospheric pressure photoionization (APPI(+)) to find trends between MS data of SARA fractions of crude oils with different American Petroleum Institute (API) gravities from the Sergipe-Alagoas basin (Brazil), focusing on the resin and asphaltene fractions. For the first time, an adaptation of the SARA fractionation has been performed to obtain a second resin fraction, which presented compounds with an intermediate aromaticity level between the first resins and asphaltene fraction. Both the first and second resin and the asphaltene fractions were studied on a molecular level using multiple ionization techniques and FT-ICR MS to find a direct relationship between the API gravities of a heavy, medium and light crude oil. For the FT-ICR MS data and the API gravities an aromaticity tendency was found. The data show that the use of SARA fractionation with FT-ICR MS offers a tool for comprehensive characterization of individual fractions and selective chemical characterization of the components in crude oils.

Suggested Citation

  • Jandyson M. Santos & Alessandro Vetere & Alberto Wisniewski & Marcos N. Eberlin & Wolfgang Schrader, 2018. "Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 2: Resins and Asphaltenes," Energies, MDPI, vol. 11(10), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2767-:d:175876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jandyson M. Santos & Alberto Wisniewski Jr. & Marcos N. Eberlin & Wolfgang Schrader, 2018. "Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 1: Whole Crude Oil," Energies, MDPI, vol. 11(10), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivelina K. Shishkova & Dicho S. Stratiev & Mariana P. Tavlieva & Rosen K. Dinkov & Dobromir Yordanov & Sotir Sotirov & Evdokia Sotirova & Vassia Atanassova & Simeon Ribagin & Krassimir Atanassov & Dan, 2021. "Evaluation of the Different Compatibility Indices to Model and Predict Oil Colloidal Stability and Its Relation to Crude Oil Desalting," Resources, MDPI, vol. 10(8), pages 1-20, July.
    2. Khalid Sayed & Lavania Baloo & Naresh Kumar Sharma, 2021. "Bioremediation of Total Petroleum Hydrocarbons (TPH) by Bioaugmentation and Biostimulation in Water with Floating Oil Spill Containment Booms as Bioreactor Basin," IJERPH, MDPI, vol. 18(5), pages 1-26, February.
    3. Zahra Farmani & Wolfgang Schrader, 2019. "A Detailed Look at the Saturate Fractions of Different Crude Oils Using Direct Analysis by Ultrahigh Resolution Mass Spectrometry (UHRMS)," Energies, MDPI, vol. 12(18), pages 1-12, September.
    4. Ivelina Shishkova & Dicho Stratiev & Iliyan Venkov Kolev & Svetoslav Nenov & Dimitar Nedanovski & Krassimir Atanassov & Vitaly Ivanov & Simeon Ribagin, 2022. "Challenges in Petroleum Characterization—A Review," Energies, MDPI, vol. 15(20), pages 1-33, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivelina K. Shishkova & Dicho S. Stratiev & Mariana P. Tavlieva & Rosen K. Dinkov & Dobromir Yordanov & Sotir Sotirov & Evdokia Sotirova & Vassia Atanassova & Simeon Ribagin & Krassimir Atanassov & Dan, 2021. "Evaluation of the Different Compatibility Indices to Model and Predict Oil Colloidal Stability and Its Relation to Crude Oil Desalting," Resources, MDPI, vol. 10(8), pages 1-20, July.
    2. Zahra Farmani & Wolfgang Schrader, 2019. "A Detailed Look at the Saturate Fractions of Different Crude Oils Using Direct Analysis by Ultrahigh Resolution Mass Spectrometry (UHRMS)," Energies, MDPI, vol. 12(18), pages 1-12, September.
    3. Ivelina Shishkova & Dicho Stratiev & Iliyan Venkov Kolev & Svetoslav Nenov & Dimitar Nedanovski & Krassimir Atanassov & Vitaly Ivanov & Simeon Ribagin, 2022. "Challenges in Petroleum Characterization—A Review," Energies, MDPI, vol. 15(20), pages 1-33, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2767-:d:175876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.