IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2512-d171230.html
   My bibliography  Save this article

Li-B Alloy as an Anode Material for Stable and Long Life Lithium Metal Batteries

Author

Listed:
  • Qiang Liu

    (Wuhan Institute of Marine Electric Propulsion, China Shipbuilding Industry Corporation, Wuhan 430064, China)

  • Sisi Zhou

    (Wuhan Institute of Marine Electric Propulsion, China Shipbuilding Industry Corporation, Wuhan 430064, China)

  • Cong Tang

    (Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China)

  • Qiaoling Zhai

    (Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China)

  • Xianggong Zhang

    (Wuhan Institute of Marine Electric Propulsion, China Shipbuilding Industry Corporation, Wuhan 430064, China)

  • Rui Wang

    (Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China)

Abstract

Rechargeable Li metal batteries have attracted lots of attention because they can achieve high energy densities. However, the commercialization of rechargeable Li metal batteries is delayed because Li dendrites may be generated during the batteries’ electrochemical cycles, which may cause severe safety issues. In this research, a Li-B alloy is investigated as an anode for rechargeable batteries instead of Li metal. Results show that the Li-B alloy has better effects in suppressing the formation of dendritic lithium, reducing the interface impedance and improving the cycle performance. These effects may result from the unique structure of Li-B alloy, in which free lithium is embedded in the Li 7 B 6 framework. These results suggest that Li-B alloy may be a promising anode material applicable in rechargeable lithium batteries.

Suggested Citation

  • Qiang Liu & Sisi Zhou & Cong Tang & Qiaoling Zhai & Xianggong Zhang & Rui Wang, 2018. "Li-B Alloy as an Anode Material for Stable and Long Life Lithium Metal Batteries," Energies, MDPI, vol. 11(10), pages 1-5, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2512-:d:171230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2512/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2512/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mukul D. Tikekar & Snehashis Choudhury & Zhengyuan Tu & Lynden A. Archer, 2016. "Design principles for electrolytes and interfaces for stable lithium-metal batteries," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    2. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Zhao & Qi Wang & Boheng Yuan & Yafei Lu & Xiaogang Han, 2021. "An All-Solid-State Lithium Metal Battery Based on Electrodes-Compatible Plastic Crystal Electrolyte," Energies, MDPI, vol. 14(21), pages 1-9, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    2. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    3. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Giuliano Rancilio & Alexandre Lucas & Evangelos Kotsakis & Gianluca Fulli & Marco Merlo & Maurizio Delfanti & Marcelo Masera, 2019. "Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis," Energies, MDPI, vol. 12(17), pages 1-26, August.
    6. Edoardo De Din & Fabian Bigalke & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "Analysis of a Multi-Timescale Framework for the Voltage Control of Active Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-23, April.
    7. Wu, Di & Ma, Xu & Balducci, Patrick & Bhatnagar, Dhruv, 2021. "An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands," Applied Energy, Elsevier, vol. 286(C).
    8. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    9. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    10. Hector Beltran & Pablo Ayuso & Emilio Pérez, 2020. "Lifetime Expectancy of Li-Ion Batteries used for Residential Solar Storage," Energies, MDPI, vol. 13(3), pages 1-18, January.
    11. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    12. Yunlong Han & Conghui Li & Linfeng Zheng & Gang Lei & Li Li, 2023. "Remaining Useful Life Prediction of Lithium-Ion Batteries by Using a Denoising Transformer-Based Neural Network," Energies, MDPI, vol. 16(17), pages 1-16, August.
    13. Bernhard Faessler & Aleksander Bogunović Jakobsen, 2021. "Autonomous Operation of Stationary Battery Energy Storage Systems—Optimal Storage Design and Economic Potential," Energies, MDPI, vol. 14(5), pages 1-12, March.
    14. Lam, Dylon Hao Cheng & Lim, Yun Seng & Wong, Jianhui & Allahham, Adib & Patsios, Charalampos, 2023. "A novel characteristic-based degradation model of Li-ion batteries for maximum financial benefits of energy storage system during peak demand reductions," Applied Energy, Elsevier, vol. 343(C).
    15. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    16. Minhwan Seo & Taedong Goh & Minjun Park & Sang Woo Kim, 2018. "Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell," Energies, MDPI, vol. 11(7), pages 1-18, June.
    17. Martin Henke & Getu Hailu, 2020. "Thermal Management of Stationary Battery Systems: A Literature Review," Energies, MDPI, vol. 13(16), pages 1-16, August.
    18. Rafaela MATEI & George SUCIU, 2020. "The future of bioenergy as a component of smart cities," Smart Cities International Conference (SCIC) Proceedings, Smart-EDU Hub, Faculty of Public Administration, National University of Political Studies & Public Administration, vol. 8, pages 383-392, November.
    19. Roberto Gómez-Calvet & José M. Martínez-Duart, 2019. "On the Assessment of the 2030 Power Sector Transition in Spain," Energies, MDPI, vol. 12(7), pages 1-17, April.
    20. Arjuna Nebel & Julián Cantor & Sherif Salim & Amro Salih & Dixit Patel, 2022. "The Role of Renewable Energies, Storage and Sector-Coupling Technologies in the German Energy Sector under Different CO 2 Emission Restrictions," Sustainability, MDPI, vol. 14(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2512-:d:171230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.