IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2017i1p63-d124829.html
   My bibliography  Save this article

Dynamic Power Flow Cascading Failure Analysis of Wind Power Integration with Complex Network Theory

Author

Listed:
  • Yushu Sun

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China)

  • Xisheng Tang

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China)

  • Guowei Zhang

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China)

  • Fufeng Miao

    (State Grid Henan Power Company Economic and Technological Research Institute, Zhengzhou 450052, China)

  • Ping Wang

    (Jiangsu Province Electrochemical Energy Storage Technology Key Laboratory, Taizhou 225500, China)

Abstract

The impact of the rapid development of large-scale centralized wind power farms on the power system is drawing more and more attention. Some topics about grid-connected wind power are discussed from the view of complex network theory in this paper. Firstly, a complex network cascading failure model is established, combined with dynamic AC power flow (DACPF). Then, the IEEE 30 bus system is used to analyze its validity using the simulations of nodes removal, wind power integration, as well as the change of current and voltage boundaries. Furthermore, the influences of wind power before and after smoothing are investigated. Also, different wind power coupling locations are studied. Finally, some significant conclusions are obtained to provide references for large-scale wind power integration.

Suggested Citation

  • Yushu Sun & Xisheng Tang & Guowei Zhang & Fufeng Miao & Ping Wang, 2017. "Dynamic Power Flow Cascading Failure Analysis of Wind Power Integration with Complex Network Theory," Energies, MDPI, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:63-:d:124829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/63/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/63/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. E. J. Newman & D. J. Watts, 1999. "Renormalization Group Analysis of the Small-World Network Model," Working Papers 99-04-029, Santa Fe Institute.
    2. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    3. Yin, Rong-Rong & Liu, Bin & Liu, Hao-Ran & Li, Ya-Qian, 2016. "Research on invulnerability of the random scale-free network against cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 458-465.
    4. Peng, Xingzhao & Yao, Hong & Du, Jun & Wang, Zhe & Ding, Chao, 2015. "Invulnerability of scale-free network against critical node failures based on a renewed cascading failure model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 69-77.
    5. Saniee Monfared, Momhammad Ali & Jalili, Mahdi & Alipour, Zohreh, 2014. "Topology and vulnerability of the Iranian power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 24-33.
    6. Chen, Guo & Dong, Zhao Yang & Hill, David J. & Zhang, Guo Hua & Hua, Ke Qian, 2010. "Attack structural vulnerability of power grids: A hybrid approach based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 595-603.
    7. Jian-Wei Wang & Li-Li Rong, 2009. "Vulnerability Of Effective Attack On Edges In Scale-Free Networks Due To Cascading Failures," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1291-1298.
    8. Solé, Ricard V. & Valverde, Sergi, 2001. "Information transfer and phase transitions in a model of internet traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 595-605.
    9. Liu, Jun & Xiong, Qingyu & Shi, Xin & Wang, Kai & Shi, Weiren, 2016. "Robustness of complex networks with an improved breakdown probability against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 302-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Zhang & Limin Jia & Jin Ning & Yujiang Ye & Hao Sun & Ruifeng Shi, 2023. "Power Grid Structure Performance Evaluation Based on Complex Network Cascade Failure Analysis," Energies, MDPI, vol. 16(2), pages 1-15, January.
    2. Wu, Taocheng & Wu, Jiajing & You, Wei, 2018. "Optimizing robustness of complex networks with heterogeneous node functions based on the Memetic Algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 143-153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    2. Espejo, Rafael & Lumbreras, Sara & Ramos, Andres, 2018. "Analysis of transmission-power-grid topology and scalability, the European case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 383-395.
    3. Huang, Wei & Chen, Shengyong & Wang, Wanliang, 2014. "Navigation in spatial networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 132-154.
    4. Zhou, Lin & Qi, Xiaogang & Liu, Lifang, 2023. "Robustness of networks with dependency groups considering fluctuating loads and recovery behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    5. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    7. David L. Alderson, 2008. "OR FORUM---Catching the “Network Science” Bug: Insight and Opportunity for the Operations Researcher," Operations Research, INFORMS, vol. 56(5), pages 1047-1065, October.
    8. Hao, Yucheng & Jia, Limin & Wang, Yanhui, 2020. "Robustness of weighted networks with the harmonic closeness against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    9. McCarter, Matthew & Barker, Kash & Johansson, Jonas & Ramirez-Marquez, Jose E., 2018. "A bi-objective formulation for robust defense strategies in multi-commodity networks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 154-161.
    10. Huiming Duan & Xinping Xiao & Lingling Pei, 2017. "Forecasting the Short-Term Traffic Flow in the Intelligent Transportation System Based on an Inertia Nonhomogenous Discrete Gray Model," Complexity, Hindawi, vol. 2017, pages 1-16, July.
    11. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    12. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    13. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    14. Yang, Guizhen & Qi, Xiaogang & Liu, Lifang, 2020. "Research on network robustness based on different deliberate attack methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Marcus Berliant & Axel H. Watanabe, 2018. "A scale‐free transportation network explains the city‐size distribution," Quantitative Economics, Econometric Society, vol. 9(3), pages 1419-1451, November.
    16. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    17. An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
    18. Khalilzadeh, Jalayer, 2022. "It is a small world, or is it? A look into two decades of tourism system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    19. Xiangyun Gao & Haizhong An & Weiqiong Zhong, 2013. "Features of the Correlation Structure of Price Indices," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    20. Almoghathawi, Yasser & Barker, Kash & Rocco, Claudio M. & Nicholson, Charles D., 2017. "A multi-criteria decision analysis approach for importance identification and ranking of network components," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 142-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:63-:d:124829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.