IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1265-d109814.html
   My bibliography  Save this article

Spatial Variation in Sediment Organic Carbon Distribution across the Alaskan Beaufort Sea Shelf

Author

Listed:
  • Richard B. Coffin

    (Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
    Marine Biogeochemistry, Naval Research Laboratory, Washington, DC 20375, USA)

  • Joseph P. Smith

    (Department of Oceanography, US Naval Academy, Annapolis, MD 21402, USA)

  • Brandon Yoza

    (Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI 96822, USA)

  • Thomas J. Boyd

    (Marine Biogeochemistry, Naval Research Laboratory, Washington, DC 20375, USA)

  • Michael T. Montgomery

    (Marine Biogeochemistry, Naval Research Laboratory, Washington, DC 20375, USA)

Abstract

In September 2009, a series of sediment cores were collected across the Alaskan Beaufort Sea shelf-slope. Sediment and porewater organic carbon (OC) concentrations and stable carbon isotope ratios (δ 13 C) were measured to investigate spatial variations in sediment organic matter (OM) sources and distribution of these materials across the shelf. Cores were collected along three main nearshore (shelf) to offshore (slope) sampling lines (transects) from east-to-west along the North Slope of Alaska: Hammerhead (near Camden Bay), Thetis Island (near Prudhoe Bay), and Cape Halkett (towards Point Barrow). Measured sediment organic carbon (TOC) and porewater dissolved organic carbon (DOC) concentrations and their respective δ 13 C values were used to investigate the relative contribution of different OM sources to sediment OC pool cycled at each location. Sources of OM considered included: water column-sourced phytodetritus, deep sediment methane (CH 4 ), and terrestrial, tundra/river-sourced OM. Results of these measurements, when coupled with results from previous research and additional analyses of sediment and porewater composition, show a pattern of spatial variation in sediment OC concentrations, OM source contributions, and OM cycled along the Alaskan Beaufort Sea shelf. In general, measured sediment total organic carbon (TOC) concentrations, δ 13 C TOC values, porewater DOC concentrations, and δ 13 C DOC values are consistent with an east-to-west transport of modern Holocene sediments with higher OC concentrations primarily sourced from relatively labile terrestrial, tundra OM sources and phytodetritus along the Alaskan Beaufort shelf. Sediment transport along the shelf results in the medium-to-long term accumulation and burial of sediment OM focused to the west which in turn results in higher biogenic CH 4 production rates and higher upward CH 4 diffusion through the sediments resulting in CH 4 − AMO-sourced contribution to sediment OC westward along the shelf. Understanding current OM sources and distributions along the Alaskan Beaufort shelf is important for enhancing models of carbon cycling in Arctic coastal shelf systems. This will help support the prediction of the climate response of the Arctic created in the face of future warming scenarios.

Suggested Citation

  • Richard B. Coffin & Joseph P. Smith & Brandon Yoza & Thomas J. Boyd & Michael T. Montgomery, 2017. "Spatial Variation in Sediment Organic Carbon Distribution across the Alaskan Beaufort Sea Shelf," Energies, MDPI, vol. 10(9), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1265-:d:109814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph P. Smith & Richard B. Coffin, 2014. "Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico," Energies, MDPI, vol. 7(9), pages 1-24, September.
    2. Richard B. Coffin & Leila J. Hamdan & Joseph P. Smith & Paula S. Rose & Rebecca E. Plummer & Brandon Yoza & Ingo Pecher & Michael T. Montgomery, 2014. "Contribution of Vertical Methane Flux to Shallow Sediment Carbon Pools across Porangahau Ridge, New Zealand," Energies, MDPI, vol. 7(8), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard B. Coffin & Gareth Crutchley & Ingo Pecher & Brandon Yoza & Thomas J. Boyd & Joshu Mountjoy, 2022. "Porewater Geochemical Assessment of Seismic Indications for Gas Hydrate Presence and Absence: Mahia Slope, East of New Zealand’s North Island," Energies, MDPI, vol. 15(3), pages 1-18, February.
    2. Joseph P. Smith & Richard B. Coffin, 2014. "Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico," Energies, MDPI, vol. 7(9), pages 1-24, September.
    3. Richard B. Coffin & Christopher L. Osburn & Rebecca E. Plummer & Joseph P. Smith & Paula S. Rose & Kenneth S. Grabowski, 2015. "Deep Sediment-Sourced Methane Contribution to Shallow Sediment Organic Carbon: Atwater Valley, Texas-Louisiana Shelf, Gulf of Mexico," Energies, MDPI, vol. 8(3), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1265-:d:109814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.