IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1222-d108631.html
   My bibliography  Save this article

Quantifying Cathode Water Transport via Anode Relative Humidity Measurements in a Polymer Electrolyte Membrane Fuel Cell

Author

Listed:
  • Logan Battrell

    (Chemical and Biological Engineering Department, Montana State University, Bozeman, MT 59717, USA)

  • Aubree Trunkle

    (Chemical and Biological Engineering Department, Montana State University, Bozeman, MT 59717, USA)

  • Erica Eggleton

    (Chemical and Biological Engineering Department, Montana State University, Bozeman, MT 59717, USA)

  • Lifeng Zhang

    (Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada)

  • Ryan Anderson

    (Chemical and Biological Engineering Department, Montana State University, Bozeman, MT 59717, USA
    Energy Research Institute, Montana State University, Bozeman, MT 59717, USA)

Abstract

A relative humidity (RH) measurement based on pressure drop analysis is presented as a diagnostic tool to experimentally quantify the amount of excess water on the cathode side of a polymer electrolyte membrane fuel cell (PEMFC). Ex-situ pressure drop calibration curves collected at fixed RH values, used with a set of well-defined equations for the anode pressure drop, allows for an estimate of in-situ relative humidity values. During the in-situ test, a dry anode inlet stream at increasing flow rates is used to create an evaporative gradient to drive water from the cathode to the anode. This combination of techniques thus quantitatively determines the changing net cell water flux. Knowing the cathodic water production rate, the net water flux to the anode can explain the influence of liquid and vapor transport as a function of GDL selection. Experimentally obtained quantified values for the water removal rate for a variety of cathode gas diffusion layer (GDL) setups are presented, which were chosen to experimentally vary a range of water management abilities, from high to low performance. The results show that more water is transported to the anode when a GDL with poor water management capabilities is used, due to the higher levels of initial saturation occurring on the cathode. At sufficiently high concentration gradients, the anode removes more water than is produced by the reaction, allowing for the quantification of excess water saturating the cathode. The protocol is broadly accessible and applicable as a quantitative diagnostic tool of water management in PEMFCs.

Suggested Citation

  • Logan Battrell & Aubree Trunkle & Erica Eggleton & Lifeng Zhang & Ryan Anderson, 2017. "Quantifying Cathode Water Transport via Anode Relative Humidity Measurements in a Polymer Electrolyte Membrane Fuel Cell," Energies, MDPI, vol. 10(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1222-:d:108631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1222/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1222/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
    2. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    3. Pei, Pucheng & Li, Yuehua & Xu, Huachi & Wu, Ziyao, 2016. "A review on water fault diagnosis of PEMFC associated with the pressure drop," Applied Energy, Elsevier, vol. 173(C), pages 366-385.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behzad Najafi & Paolo Bonomi & Andrea Casalegno & Fabio Rinaldi & Andrea Baricci, 2020. "Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests," Energies, MDPI, vol. 13(14), pages 1-19, July.
    2. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    3. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    4. Yu Zang & Wei Shangguan & Baigen Cai & Huashen Wang & Michael G Pecht, 2019. "Methods for fault diagnosis of high-speed railways: A review," Journal of Risk and Reliability, , vol. 233(5), pages 908-922, October.
    5. Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
    6. Feng Han & Ying Tian & Qiang Zou & Xin Zhang, 2020. "Research on the Fault Diagnosis of a Polymer Electrolyte Membrane Fuel Cell System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    7. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Xu, Huachi & Chen, Dongfang & Huang, Shangwei, 2017. "Novel approach to determine cathode two-phase-flow pressure drop of proton exchange membrane fuel cell and its application on water management," Applied Energy, Elsevier, vol. 190(C), pages 713-724.
    8. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    9. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    10. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    11. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    12. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    13. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    14. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    15. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    16. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    17. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    18. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    19. Bolouri, Amir & Kang, Chung Gil, 2014. "Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 71(C), pages 616-628.
    20. Culubret, S. & Rubio, M.A. & Sanchez, D.G. & Urquia, A., 2024. "Performance uniformity analysis in polymer electrolyte fuel cell using long-term dynamic simulation," Applied Energy, Elsevier, vol. 365(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1222-:d:108631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.