IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1212-d108322.html
   My bibliography  Save this article

Coordinated Control of Multi-Type Energy Storage for Wind Power Fluctuation Suppression

Author

Listed:
  • Xisheng Tang

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China)

  • Yushu Sun

    (Institute of Electrical Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China)

  • Guopeng Zhou

    (North China Electric Power Research Institute Co., Ltd, Beijing 100045, China)

  • Fufeng Miao

    (Henan Electric Power Company Economic Research Institute, Zhengzhou 450052, China)

Abstract

The fluctuations of wind power impact the stable operation of a power system as its penetration grows high. Energy storage may be a potential solution to suppress these fluctuations and has drawn much attention in recent years. As the time scale of wind power fluctuations is in a range of seconds to hours, multi-type energy storage with complementary characteristics, such as the combination of energy-type storage devices (ESD) and power-type storage device (PSD), may be technically and economically feasible to suppress multi-time-scale wind power fluctuations. Therefore, system control is very important when the power allocation among each of the energy storage units is considered. In this paper, a novel coordinated control strategy based on model predictive control (MPC) was proposed for wind power fluctuation suppression, which employs MPC for the total power required for the whole energy storage system and then allocates it between ESD and PSD with the low-pass filter algorithm (LFA) method. Due to the predictive feature of MPC, the power requirement of the energy storage system can be obtained with little time delay, which means less energy is needed. The effectiveness of the proposed control strategy was verified in a time-domain simulation system. The influence of wind speed conditions and LFA time constant on the wind/storage system were further discussed.

Suggested Citation

  • Xisheng Tang & Yushu Sun & Guopeng Zhou & Fufeng Miao, 2017. "Coordinated Control of Multi-Type Energy Storage for Wind Power Fluctuation Suppression," Energies, MDPI, vol. 10(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1212-:d:108322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1212/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingping Yun & Yongfeng Ren & Yu Xue, 2018. "Energy-Storage Optimization Strategy for Reducing Wind Power Fluctuation via Markov Prediction and PSO Method," Energies, MDPI, vol. 11(12), pages 1-23, December.
    2. Mengying Chen & Yifeng Wang & Liang Yang & Fuqiang Han & Yuqi Hou & Haiyun Yan, 2018. "A Variable-Structure Multi-Resonant DC–DC Converter with Smooth Switching," Energies, MDPI, vol. 11(9), pages 1-21, August.
    3. Chunghun Kim & Eduard Muljadi & Chung Choo Chung, 2017. "Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation," Energies, MDPI, vol. 11(1), pages 1-18, December.
    4. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming, 2020. "Power Smoothing and Energy Storage Sizing of Vented Oscillating Water Column Wave Energy Converter Arrays," Energies, MDPI, vol. 13(5), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1212-:d:108322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.