Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Draper, Teri Snow & Zeltner, Darrel & Tree, Dale R. & Xue, Yuan & Tsiava, Remi, 2012. "Two-dimensional flame temperature and emissivity measurements of pulverized oxy-coal flames," Applied Energy, Elsevier, vol. 95(C), pages 38-44.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Junyi Lin & Xiangyu Zhang & Kaiyun Liu & Wenjie Zhang, 2019. "Emissivity Characteristics of Hydrocarbon Flame and Temperature Measurement by Color Image Processing," Energies, MDPI, vol. 12(11), pages 1-14, June.
- Weijie Yan & Yunqi Ya & Feng Du & Hao Shao & Peitao Zhao, 2017. "Spectrometer-Based Line-of-Sight Temperature Measurements during Alkali-Pulverized Coal Combustion in a Power Station Boiler," Energies, MDPI, vol. 10(9), pages 1-14, September.
- Wei Wang & Dong Liu & Yaoyao Ying & Guannan Liu & Ye Wu, 2017. "On the Response of Nascent Soot Nanostructure and Oxidative Reactivity to Photoflash Exposure," Energies, MDPI, vol. 10(7), pages 1-11, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Dongdong & Cheng, Shusen, 2019. "Measurement study of the PCI process on the temperature distribution in raceway zone of blast furnace by using digital imaging techniques," Energy, Elsevier, vol. 174(C), pages 814-822.
- Chen, Junghui & Chan, Lester Lik Teck & Cheng, Yi-Cheng, 2013. "Gaussian process regression based optimal design of combustion systems using flame images," Applied Energy, Elsevier, vol. 111(C), pages 153-160.
- Ren, Tao & Modest, Michael F. & Fateev, Alexander & Sutton, Gavin & Zhao, Weijie & Rusu, Florin, 2019. "Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Pourhoseini, S.H., 2017. "A novel configuration of natural gas diffusion burners to enhance optical, thermal and radiative characteristics of flame and reduce NOx emission," Energy, Elsevier, vol. 132(C), pages 41-48.
- Pourhoseini, S.H., 2020. "Enhancement of radiation characteristics and reduction of NOx emission in natural gas flame through silver-water nanofluid injection," Energy, Elsevier, vol. 194(C).
- Weijie Yan & Yunqi Ya & Feng Du & Hao Shao & Peitao Zhao, 2017. "Spectrometer-Based Line-of-Sight Temperature Measurements during Alkali-Pulverized Coal Combustion in a Power Station Boiler," Energies, MDPI, vol. 10(9), pages 1-14, September.
More about this item
Keywords
oxy-combustion; soot volume fraction; temperature measurement; flame image processing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:750-:d:99864. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.