IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p634-d97693.html
   My bibliography  Save this article

Numerical Study of Pressure Fluctuation in a Gas- Liquid Two-Phase Mixed-Flow Pump

Author

Listed:
  • Wenwu Zhang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Zhiyi Yu

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Baoshan Zhu

    (State Key Laboratory of Hydroscience and Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China)

Abstract

To explore the pressure fluctuation characteristics in a mixed-flow pump handling a gas-liquid two-phase flow, an unsteady simulation was carried out with ANSYS CFX for the whole flow passage when the inlet gas void fraction ( IGVF ) was 0%, 5%, and 10%, respectively. Under pure water conditions ( IGVF = 0%), the reliability of the simulation was verified by comparing with the experiment in both aspects of external characteristics and fluctuation. Through the implementation of the fast Fourier transform (FFT) algorithm, the characteristics of the pressure fluctuation in the impeller and the guide vane were obtained at different IGVF conditions. The results demonstrate that pressure fluctuations exist under different IGVF conditions due to the rotor-stator interaction and the gas-liquid phase interaction, and the intensity of the fluctuation is firstly enhanced, and then weakened, along the streamwise direction with the maximum located near the impeller outlet. The relationship between the gas content and the pressure fluctuation was analyzed, and it is shown that the regional pressure fluctuation will be intensified only if the gas content therein reaches a certain level and the local phase interaction is strong. In addition, the pressure fluctuation in both the rotor-stator interaction region and the guide vane may be effectively inhibited under small IGVF conditions.

Suggested Citation

  • Wenwu Zhang & Zhiyi Yu & Baoshan Zhu, 2017. "Numerical Study of Pressure Fluctuation in a Gas- Liquid Two-Phase Mixed-Flow Pump," Energies, MDPI, vol. 10(5), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:634-:d:97693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenwu Zhang & Zhiyi Yu & Baoshan Zhu, 2017. "Influence of Tip Clearance on Pressure Fluctuation in Low Specific Speed Mixed-Flow Pump Passage," Energies, MDPI, vol. 10(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wenwu & Xie, Xing & Zhu, Baoshan & Ma, Zhe, 2021. "Analysis of phase interaction and gas holdup in a multistage multiphase rotodynamic pump based on a modified Euler two-fluid model," Renewable Energy, Elsevier, vol. 164(C), pages 1496-1507.
    2. Wenwu Zhang & Zhiyi Yu & Muhammad Noaman Zahid & Yongjiang Li, 2018. "Study of the Gas Distribution in a Multiphase Rotodynamic Pump Based on Interphase Force Analysis," Energies, MDPI, vol. 11(5), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    2. Yabin Liu & Lei Tan & Binbin Wang, 2018. "A Review of Tip Clearance in Propeller, Pump and Turbine," Energies, MDPI, vol. 11(9), pages 1-30, August.
    3. Wenwu Zhang & Zhiyi Yu & Muhammad Noaman Zahid & Yongjiang Li, 2018. "Study of the Gas Distribution in a Multiphase Rotodynamic Pump Based on Interphase Force Analysis," Energies, MDPI, vol. 11(5), pages 1-16, April.
    4. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    5. Xi, Shen & Desheng, Zhang & Bin, Xu & Weidong, Shi & (Bart) van Esch, B.P.M., 2021. "Experimental and numerical investigation on the effect of tip leakage vortex induced cavitating flow on pressure fluctuation in an axial flow pump," Renewable Energy, Elsevier, vol. 163(C), pages 1195-1209.
    6. Zhe Ma & Baoshan Zhu & Cong Rao & Yonghong Shangguan, 2019. "Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner," Energies, MDPI, vol. 12(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:634-:d:97693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.