IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p470-d94801.html
   My bibliography  Save this article

Impedance Decoupling in DC Distributed Systems to Maintain Stability and Dynamic Performance

Author

Listed:
  • Ahmed Aldhaheri

    (Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA)

  • Amir Etemadi

    (Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA)

Abstract

DC distributed systems are highly reliable and efficient means of delivering DC power or adopting renewable energy resources. However, DC distributed systems are prone to instability and dynamic performance degradation due to the negative incremental input impedance of DC-DC converts. In this paper, we propose a generic method to eliminate the impact of the negative input impedance on DC systems by shaping the source output impedance such that its bode-plot is restricted in the area that is contained below the product of the source’s duty ratio and its characteristic impedance. The performance deterioration originates whenever the output impedance of the source exceeds, in magnitude, the input impedance of the load converter due to deficiency in stability margins. Hence, confining the impedance in the proposed region helps decouple the interaction between the converters and preserve their own dynamic performances. The proposed method was proven by analytical analysis, time-based simulation, and practical experiments. All of their outcomes were in agreement, proving the effectiveness of the proposed method in preserving the dynamic performance of distributed systems.

Suggested Citation

  • Ahmed Aldhaheri & Amir Etemadi, 2017. "Impedance Decoupling in DC Distributed Systems to Maintain Stability and Dynamic Performance," Energies, MDPI, vol. 10(4), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:470-:d:94801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/470/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingpeng Yue & Zhijian Hu & Chendan Li & Juan C. Vasquez & Josep M. Guerrero, 2017. "Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System," Energies, MDPI, vol. 10(7), pages 1-14, July.
    2. Ranjan Kumar & Chandrashekhar N. Bhende, 2023. "Active Damping Stabilization Techniques for Cascaded Systems in DC Microgrids: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    3. Jae-Suk Lee & Yeong-Jun Choi, 2021. "A Stability Improvement Method of DC Microgrid System Using Passive Damping and Proportional-Resonance (PR) Control," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    4. Xiang Wang & Zhengyou He & Jianwei Yang, 2018. "Electric Vehicle Fast-Charging Station Unified Modeling and Stability Analysis in the dq Frame," Energies, MDPI, vol. 11(5), pages 1-24, May.
    5. Shahbaz Khan & Xiaobin Zhang & Bakht Muhammad Khan & Husan Ali & Haider Zaman & Muhammad Saad, 2018. "AC and DC Impedance Extraction for 3-Phase and 9-Phase Diode Rectifiers Utilizing Improved Average Mathematical Models," Energies, MDPI, vol. 11(3), pages 1-19, March.
    6. Muhammad Saad & Husan Ali & Huamei Liu & Shahbaz Khan & Haider Zaman & Bakht Muhammad Khan & Du Kai & Ju Yongfeng, 2018. "A dq -Domain Impedance Measurement Methodology for Three-Phase Converters in Distributed Energy Systems," Energies, MDPI, vol. 11(10), pages 1-15, October.
    7. Ahmed Aldhaheri & Amir Etemadi, 2018. "Adaptive Stabilization and Dynamic Performance Preservation of Cascaded DC-DC Systems by Incorporating Low Pass Filters," Energies, MDPI, vol. 11(2), pages 1-19, February.
    8. Yangfan Chen & Yu Zhang, 2023. "DC Transformers in DC Distribution Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    9. Bahram Shakerighadi & Esmaeil Ebrahimzadeh & Frede Blaabjerg & Claus Leth Bak, 2018. "Large-Signal Stability Modeling for the Grid-Connected VSC Based on the Lyapunov Method," Energies, MDPI, vol. 11(10), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:470-:d:94801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.