IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p354-d92891.html
   My bibliography  Save this article

Thermal and Stability Investigation of Phase Change Material Dispersions for Thermal Energy Storage by T-History and Optical Methods

Author

Listed:
  • Maria Gabriela De Paola

    (Department of Mechanical, Energy and Management Engineering (DIMEG), University of Calabria, Via P. Bucci 46/C, 87036 Rende, Italy)

  • Natale Arcuri

    (Department of Mechanical, Energy and Management Engineering (DIMEG), University of Calabria, Via P. Bucci 46/C, 87036 Rende, Italy)

  • Vincenza Calabrò

    (Department of Informatics, Modelling, Electronics and System Engineering (DIMES), University of Calabria, Via P. Bucci 39/C, 87036 Rende, Italy)

  • Marilena De Simone

    (Department of Mechanical, Energy and Management Engineering (DIMEG), University of Calabria, Via P. Bucci 46/C, 87036 Rende, Italy)

Abstract

Glauber’s salt (sodium sulphate decahydrate) is a promising phase change material (PCM) for use in the building sector, thanks to its high enthalpy of fusion associated with a proper phase transition temperature. It also offers economic and environmental advantages because it can be obtained as a byproduct from the disposal process of lead batteries. However, due to phenomena of phase segregation and supercooling, Glauber’s salt cannot be used in its pure state and requires the addition of rheological modifiers and nucleating agents. In this work, the initial thermal performances of mixtures based on Glauber’s salt with different compositions are compared by using the T-history method and adopting sonication for mixing, and following the same preparation procedure for all the samples. With fixed composition, the effects of the addition sequence of the reagents are also examined. The analysis carried out by optical methods based on light scattering (Turbiscan equipment) allowed us to identify the kinetics of destabilization for each sample and revealed the need to specify in detail the preparation stages of PCMs, in order to make the composition reproducible in the laboratory and on a wider scale.

Suggested Citation

  • Maria Gabriela De Paola & Natale Arcuri & Vincenza Calabrò & Marilena De Simone, 2017. "Thermal and Stability Investigation of Phase Change Material Dispersions for Thermal Energy Storage by T-History and Optical Methods," Energies, MDPI, vol. 10(3), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:354-:d:92891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stanković, Stanislava B. & Kyriacou, Panayiotis A., 2013. "Improved measurement technique for the characterization of organic and inorganic phase change materials using the T-history method," Applied Energy, Elsevier, vol. 109(C), pages 433-440.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Zhang & Hongzhi Cui & Waiching Tang & Guochen Sang & Hong Wu, 2017. "Effect of Summer Ventilation on the Thermal Performance and Energy Efficiency of Buildings Utilizing Phase Change Materials," Energies, MDPI, vol. 10(8), pages 1-17, August.
    2. Seok-Joon Lee & Seul-Hyun Park, 2018. "An Experimental Investigation of Thermal Characteristics of Phase Change Material Applied to Improve the Isothermal Operation of a Refrigerator," Energies, MDPI, vol. 11(8), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tittelein, Pierre & Gibout, Stéphane & Franquet, Erwin & Johannes, Kevyn & Zalewski, Laurent & Kuznik, Frédéric & Dumas, Jean-Pierre & Lassue, Stéphane & Bédécarrats, Jean-Pierre & David, Damien, 2015. "Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: Influence of the thermodynamical modelling," Applied Energy, Elsevier, vol. 140(C), pages 269-274.
    2. Arnold Martínez & Mauricio Carmona & Cristóbal Cortés & Inmaculada Arauzo, 2020. "Characterization of Thermophysical Properties of Phase Change Materials Using Unconventional Experimental Technologies," Energies, MDPI, vol. 13(18), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:354-:d:92891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.