IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p340-d92741.html
   My bibliography  Save this article

A New Method of Ground Fault Location in 2 × 25 kV Railway Power Supply Systems

Author

Listed:
  • Jesús Serrano

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, Madrid 28006, Spain)

  • Carlos A. Platero

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, Madrid 28006, Spain)

  • Máximo López-Toledo

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutierrez Abascal, 2, Madrid 28006, Spain)

  • Ricardo Granizo

    (Department of Electrical Engineering, ETS Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, C/Ronda de Valencia, 3, Madrid 28012, Spain)

Abstract

Owing to the installation of autotransformers at regular intervals along the line, distance protection relays cannot be used with the aim of locating ground faults in 2 × 25 kV railway power supply systems. The reason is that the ratio between impedance and distance to the fault point is not linear in these electrification systems, unlike in 1 × 25 kV power systems. Therefore, the location of ground faults represents a complicated task in 2 × 25 kV railway power supply systems. Various methods have been used to localize the ground fault position in 2 × 25 kV systems. The method described here allows the location of a ground fault to be economically found in an accurate way in real time, using the modules of the circulating currents in different autotransformers when the ground fault occurs. This method first needs to know the subsection and the conductor (catenary or feeder) with the defect, then localizes the ground fault’s position.

Suggested Citation

  • Jesús Serrano & Carlos A. Platero & Máximo López-Toledo & Ricardo Granizo, 2017. "A New Method of Ground Fault Location in 2 × 25 kV Railway Power Supply Systems," Energies, MDPI, vol. 10(3), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:340-:d:92741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jesus Serrano & Carlos A. Platero & Maximo López-Toledo & Ricardo Granizo, 2015. "A Novel Ground Fault Identification Method for 2 × 5 kV Railway Power Supply Systems," Energies, MDPI, vol. 8(7), pages 1-20, July.
    2. Yimin Zhou & Guoqing Xu & Yanfeng Chen, 2012. "Fault Location in Power Electrical Traction Line System," Energies, MDPI, vol. 5(12), pages 1-17, November.
    3. Guoqing Xu & Yimin Zhou & Yanfeng Chen, 2013. "Model-Based Fault Location with Frequency Domain for Power Traction System," Energies, MDPI, vol. 6(7), pages 1-18, June.
    4. Bingtuan Gao & Wei Wei & Luoma Zhang & Ning Chen & Yingjun Wu & Yi Tang, 2014. "Differential Protection for an Outgoing Transformer of Large-Scale Doubly Fed Induction Generator-Based Wind Farms," Energies, MDPI, vol. 7(9), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhengqing Han & Shuai Li & Shuping Liu & Shibin Gao, 2020. "Generalized Fault-Location Scheme for All-Parallel AT Electric Railway System," Energies, MDPI, vol. 13(16), pages 1-17, August.
    2. Carlos A. Platero & Jesús Serrano & Máximo López-Toledo & Ricardo Granizo, 2018. "Influence of High-Speed Train Power Consumption and Arc Fault Resistances on a Novel Ground Fault Location Method for 2 × 25 kV Railway Power Supply Systems," Energies, MDPI, vol. 11(6), pages 1-20, June.
    3. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesus Serrano & Carlos A. Platero & Maximo López-Toledo & Ricardo Granizo, 2015. "A Novel Ground Fault Identification Method for 2 × 5 kV Railway Power Supply Systems," Energies, MDPI, vol. 8(7), pages 1-20, July.
    2. Shuai Wang & Minwu Chen & Qunzhan Li & Wenxun Huang & Bo Wu, 2018. "A New Hybrid Fault Identification Method Based on Multiterminals Synchronous Measure Information for All Parallel at Traction Power Supply System," Energies, MDPI, vol. 11(10), pages 1-21, October.
    3. Carlos A. Platero & Jesús Serrano & Máximo López-Toledo & Ricardo Granizo, 2018. "Influence of High-Speed Train Power Consumption and Arc Fault Resistances on a Novel Ground Fault Location Method for 2 × 25 kV Railway Power Supply Systems," Energies, MDPI, vol. 11(6), pages 1-20, June.
    4. Olga Akhmedova & Anatoliy Soshinov & Farit Gazizov & Svetlana Ilyashenko, 2021. "Development of an Intelligent System for Distance Relay Protection with Adaptive Algorithms for Determining the Operation Setpoints," Energies, MDPI, vol. 14(4), pages 1-20, February.
    5. Guoqing Xu & Yimin Zhou & Yanfeng Chen, 2013. "Model-Based Fault Location with Frequency Domain for Power Traction System," Energies, MDPI, vol. 6(7), pages 1-18, June.
    6. Ricardo Granizo Arrabé & Carlos Antonio Platero Gaona & Fernando Álvarez Gómez & Emilio Rebollo López, 2016. "Novel Auto-Reclosing Blocking Method for Combined Overhead-Cable Lines in Power Networks," Energies, MDPI, vol. 9(11), pages 1-20, November.
    7. Zhengqing Han & Shuai Li & Shuping Liu & Shibin Gao, 2020. "Generalized Fault-Location Scheme for All-Parallel AT Electric Railway System," Energies, MDPI, vol. 13(16), pages 1-17, August.
    8. Jingde Xia & Shaozhuo Li & Shuping Gao & Wenquan Shao & Guobing Song & Changjiang Chen, 2021. "Research on Differential Protection of Generator Based on New Braking Mode," Energies, MDPI, vol. 14(7), pages 1-16, March.
    9. Mansouri, M.Mahdi & Nayeripour, Majid & Negnevitsky, Michael, 2016. "Internal electrical protection of wind turbine with doubly fed induction generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 840-855.
    10. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Li, Feng-ting, 2015. "Analysis and countermeasures of wind power curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1429-1436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:340-:d:92741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.