IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i2p255-d90871.html
   My bibliography  Save this article

Research on the Combustion Characteristics and Kinetic Analysis of the Recycling Dust for a COREX Furnace

Author

Listed:
  • Haiyang Wang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Jianliang Zhang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Guangwei Wang

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Di Zhao

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Jian Guo

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Tengfei Song

    (School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

Thermogravimetric analysis of recycling dust (RD) from the melter gasifier of COREX, coke1 (C-1), coke2 (C-2) and coal char (CC) under 70% oxygen atmosphere was carried out using thermal balance. The chemical composition and physical structure of the samples were investigated. The characteristic temperatures and comprehensive combustion characteristic indexes were calculated and kinetic parameters during the combustion process were calculated as well using a distributed activation energy model (DAEM). The results show that the carbon in the recycling dust originates from unconsumed CC and coke fines, and the average stacking height of carbon in RD is larger than that of C-1, C-2 and CC. The conversion curves of RD are different from those of C-1, C-2 and CC, and there are two peaks in the RD conversion rate curves. The combustion profiles of RD moves to a higher temperature zone with increasing heating rates. The average activation energies of their combustion process for RD, C-1, C-2 and CC range from 191.84 kJ/mol to 128.31 kJ/mol. The activation energy for recycling dust increases as the fractional conversion increases, but the value for C-1, C-2 and CC decreases with increasing conversion, indicating different combustion mechanisms.

Suggested Citation

  • Haiyang Wang & Jianliang Zhang & Guangwei Wang & Di Zhao & Jian Guo & Tengfei Song, 2017. "Research on the Combustion Characteristics and Kinetic Analysis of the Recycling Dust for a COREX Furnace," Energies, MDPI, vol. 10(2), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:255-:d:90871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/2/255/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/2/255/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xiang & Chen, Meiqian & Wei, Yuanhang, 2016. "Assessment on oxygen enriched air co-combustion performance of biomass/bituminous coal," Renewable Energy, Elsevier, vol. 92(C), pages 428-436.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gyeong-Min Kim & Jong-Pil Kim & Kevin Yohanes Lisandy & Chung-Hwan Jeon, 2017. "Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite," Energies, MDPI, vol. 10(9), pages 1-14, September.
    2. Atimtay, Aysel & Yurdakul, Sema, 2020. "Combustion and Co-Combustion characteristics of torrefied poultry litter with lignite," Renewable Energy, Elsevier, vol. 148(C), pages 1292-1301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
    2. Promdee, Kittiphop & Chanvidhwatanakit, Jirawat & Satitkune, Somruedee & Boonmee, Chakkrich & Kawichai, Thitipong & Jarernprasert, Sittipong & Vitidsant, Tharapong, 2017. "Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1175-1186.
    3. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:2:p:255-:d:90871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.