IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2093-d122319.html
   My bibliography  Save this article

Functional Expression of the Arachis hypogaea L. Acyl-ACP Thioesterases AhFatA and AhFatB Enhances Fatty Acid Production in Synechocystis sp. PCC6803

Author

Listed:
  • Gao Chen

    (Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China
    Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Ji’nan 250100, China
    The authors contributed equally to this work. Jun Chen is the co-first author and has the same contribution to this paper.)

  • Jun Chen

    (Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    The authors contributed equally to this work. Jun Chen is the co-first author and has the same contribution to this paper.)

  • Qingfang He

    (Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA)

  • Yan Zhang

    (Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China
    Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Ji’nan 250100, China)

  • Zhenying Peng

    (Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China
    Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Ji’nan 250100, China)

  • Zhongxue Fan

    (Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China
    Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Ji’nan 250100, China)

  • Fei Bian

    (Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China
    Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Ji’nan 250100, China)

  • Jinhui Yu

    (Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Ji’nan 250100, China
    Shandong Provincial Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Ji’nan 250100, China)

  • Song Qin

    (University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Palmitoleic acid (C16:1) and stearic acid (C18:0) are precursors of polyunsaturated fatty acids, which are the focus of intensive global research due to their nutritional value, medicinal applications, and potential use as biofuel. Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that determine the types and amounts of fatty acids produced in plants and release fatty acids into the cytosol to be incorporated into glycerolipids. Based on amino acid sequence identity and substrate specificity, these enzymes are classified into two families, FatA and FatB . In this study, we cloned FatA and FatB thioesterases from Arachis hypogaea L. seeds and functionally expressed these genes, both individually and in tandem, in a blue-green alga Synechocystis sp. PCC6803. The heterologous expression of these genes in Synechocystis altered the fatty acid composition of lipids, resulting in a 29.5–31.6% increase in palmitoleic acid production and a 22.5–35.5% increase in stearic acid production. Moreover, the transgenic Synechocystis cells also showed significant increases in levels of oleic acid (C18:1, OA), linoleic acid (C18:2, LA), and α-linolenic acid (C18:3n3, ALA). These results suggest that the fatty acid profile of algae can be significantly improved by the heterologous expression of exogenous genes. This study not only provides insight into fatty acid biosynthesis, but also lays the foundation for manipulating the fatty acid content of cyanobacteria.

Suggested Citation

  • Gao Chen & Jun Chen & Qingfang He & Yan Zhang & Zhenying Peng & Zhongxue Fan & Fei Bian & Jinhui Yu & Song Qin, 2017. "Functional Expression of the Arachis hypogaea L. Acyl-ACP Thioesterases AhFatA and AhFatB Enhances Fatty Acid Production in Synechocystis sp. PCC6803," Energies, MDPI, vol. 10(12), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2093-:d:122319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerónimo Chirivella-Martorell & Álvaro Briz-Redón & Ángel Serrano-Aroca, 2018. "Modelling of Biomass Concentration, Multi-Wavelength Absorption and Discrimination Method for Seven Important Marine Microalgae Species," Energies, MDPI, vol. 11(5), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    2. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    3. Baral, Nabin & Rabotyagov, Sergey, 2017. "How much are wood-based cellulosic biofuels worth in the Pacific Northwest? Ex-ante and ex-post analysis of local people's willingness to pay," Forest Policy and Economics, Elsevier, vol. 83(C), pages 99-106.
    4. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    5. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    6. Duan, Pei-Gao & Yang, Shi-Kun & Xu, Yu-Ping & Wang, Feng & Zhao, Dan & Weng, Yu-Jing & Shi, Xian-Lei, 2018. "Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass," Energy, Elsevier, vol. 155(C), pages 734-745.
    7. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    8. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    9. Yuan, Hao & Zhang, Xinru & Jiang, Zeyi & Wang, Xinyu & Wang, Yi & Cao, Limei & Zhang, Xinxin, 2020. "Effect of light spectra on microalgal biofilm: Cell growth, photosynthetic property, and main organic composition," Renewable Energy, Elsevier, vol. 157(C), pages 83-89.
    10. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    11. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    12. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    13. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    15. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    16. Kim, Tae-Hyoung & Lee, Kyungho & Oh, Baek-Rock & Lee, Mi-Eun & Seo, Minji & Li, Sheng & Kim, Jae-Kon & Choi, Minkee & Chang, Yong Keun, 2021. "A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 165(P1), pages 481-490.
    17. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    18. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    20. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2093-:d:122319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.