IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2021-d121276.html
   My bibliography  Save this article

Optimizing the Structure of the Straight Cone Nozzle and the Parameters of Borehole Hydraulic Mining for Huadian Oil Shale Based on Experimental Research

Author

Listed:
  • Jiwei Wen

    (Center for Postdoctoral Studies of Geological Resources and Geological Engineering, Chengdu University of Technology, Chengdu 610059, China
    State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
    College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China
    Trenchless Technology Center, Louisiana Tech University, Ruston, LA 71270, USA)

  • Chen Chen

    (Key Laboratory of Drilling and Exploitation Technology in Complex Conditions of Ministry of Land and Resources, Jilin University, Changchun 130026, China
    National-Local Joint Engineering Laboratory of In-Situ Conversion, Drilling and Exploitation Technology for Oil Shale, Changchun 130021, China
    College of Construction Engineering, Jilin University, Changchun 130026, China)

Abstract

Oil shale is a kind of potential alternative energy source for petroleum and has attracted the attention of energy researchers all over the world. Borehole hydraulic mining has more prominent advantages than both conventional open-pit mining and underground mining. It is very important to attempt to use the borehole hydraulic mining method to exploit underground oil shale. The nozzle is the key component of borehole hydraulic mining and reasonable mining parameters are also crucial in exploiting underground oil shale efficiently. The straight cone nozzle and the oil shale of Huadian area will be taken as the research objects. The self-developed, multifunctional, experimental device can test both the jet’s performance as well as the breaking of oil shale by the high-pressure water jet using the straight cone nozzle and varying structural parameters. Comprehensive analysis of the results of an orthogonal experimental design, including range analysis and variance analysis, demonstrate the optimal structural parameters of a straight cone nozzle as follows: the outlet diameter is 4 mm, the length to diameter ratio is 2.5, and the contraction angle is 60°. In addition, in order to maximize the efficiency of borehole hydraulic mining for Huadian oil shale, the non-submerged jet should be placed parallel to the oil shale bedding. These results can provide scientific and valuable references for borehole hydraulic mining of oil shale.

Suggested Citation

  • Jiwei Wen & Chen Chen, 2017. "Optimizing the Structure of the Straight Cone Nozzle and the Parameters of Borehole Hydraulic Mining for Huadian Oil Shale Based on Experimental Research," Energies, MDPI, vol. 10(12), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2021-:d:121276
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yiyu Lu & Zhe Zhou & Zhaolong Ge & Xinwei Zhang & Qian Li, 2015. "Research on and Design of a Self-Propelled Nozzle for the Tree-Type Drilling Technique in Underground Coal Mines," Energies, MDPI, vol. 8(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Maksymowicz & Aleksander Frejowski & Adam Bajcar & Bartłomiej Jura, 2022. "Application of Hydro Borehole Mining (HBM) Technology for Lignite Extraction—An Environmental Assessment (LCA) and a Comparative Study with the Opencast Method," Energies, MDPI, vol. 15(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaolong Ge & Kai Deng & Yiyu Lu & Liang Cheng & Shaojie Zuo & Xingdi Tian, 2016. "A Novel Method for Borehole Blockage Removal and Experimental Study on a Hydraulic Self-Propelled Nozzle in Underground Coal Mines," Energies, MDPI, vol. 9(9), pages 1-13, August.
    2. Yiyu Lu & Songqiang Xiao & Zhaolong Ge & Zhe Zhou & Kai Deng, 2016. "Rock-Breaking Properties of Multi-Nozzle Bits for Tree-Type Drilling in Underground Coal Mines," Energies, MDPI, vol. 9(4), pages 1-17, March.
    3. Zhenlong Fang & Qiang Wu & Mengda Zhang & Haoyang Liu & Pan Jiang & Deng Li, 2019. "Large Eddy Simulation of Self-Excited Oscillation Pulsed Jet (SEOPJ) Induced by a Helmholtz Oscillator in Underground Mining," Energies, MDPI, vol. 12(11), pages 1-20, June.
    4. Zhongxiang Liu & Minghui Wei & Peng Zhang & Yutao Zhang & Tingtao Lu & Rui Xiong & Changchun Qin, 2020. "Drilling Localization and Error Analysis of Radial Horizontal Jet Drilling Based on Magnetic Gradient Tensor," Energies, MDPI, vol. 13(19), pages 1-10, September.
    5. Yiyu Lu & Shaojie Zuo & Zhaolong Ge & Songqiang Xiao & Yugang Cheng, 2016. "Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array," Energies, MDPI, vol. 9(7), pages 1-15, June.
    6. Qian Li & Yiyu Lu & Zhaolong Ge & Zhe Zhou & Jingwei Zheng & Songqiang Xiao, 2017. "A New Tree-Type Fracturing Method for Stimulating Coal Seam Gas Reservoirs," Energies, MDPI, vol. 10(9), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2021-:d:121276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.