IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1576-d114669.html
   My bibliography  Save this article

High Voltage Overhead Power Line Routing under an Objective Observability Criterion

Author

Listed:
  • L. Alfredo Fernandez-Jimenez

    (Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain)

  • Montserrat Mendoza-Villena

    (Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain)

  • Eduardo Garcia-Garrido

    (Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain)

  • Pedro M. Lara-Santillan

    (Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain)

  • Pedro J. Zorzano-Santamaria

    (Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain)

  • Enrique Zorzano-Alba

    (Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain)

  • Alberto Falces

    (Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain)

Abstract

The construction of new high voltage overhead power lines (HVOPLs) has become a controversial issue for electricity companies due to social opposition. Citizens are concerned about how these power lines may have an impact on their lives, basically caused by their effects on health and safety. Visual impact is one of the most easily perceived. Although there are several published works that deal with the assessment of the visual impact produced by HVOPLs, no methodology has been proposed to assess this impact from an objective perspective. This work presents an original methodology which helps to identify the optimal routes for a new HVOPL under an objective observability criterion, enabling the selection of those with the lowest visibility in a zone. The application of the proposed methodology achieves a set of routes that links new HVOPL origin and destination points creating a corridor which includes all possible routes with an observability of its towers under a threshold limit. This methodology is illustrated by a real-life use corresponding to the selection of the route with least observability for a new power line in La Rioja (Spain). The results obtained may help to achieve a consensus between key stakeholders since it is focused on the specific issues of the planned HVOPL and its observability from an objective perspective.

Suggested Citation

  • L. Alfredo Fernandez-Jimenez & Montserrat Mendoza-Villena & Eduardo Garcia-Garrido & Pedro M. Lara-Santillan & Pedro J. Zorzano-Santamaria & Enrique Zorzano-Alba & Alberto Falces, 2017. "High Voltage Overhead Power Line Routing under an Objective Observability Criterion," Energies, MDPI, vol. 10(10), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1576-:d:114669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harrison, Steve, 2002. "Visual Disamenity in the Queensland Wet Tropics: Estimating the Economic Impacts of Overhead Transmission Lines," Economic Analysis and Policy, Elsevier, vol. 32(2), pages 173-188, June Spec.
    2. Molina-Ruiz, José & Martínez-Sánchez, María José & Pérez-Sirvent, Carmen & Tudela-Serrano, Mari Luz & García Lorenzo, Mari Luz, 2011. "Developing and applying a GIS-assisted approach to evaluate visual impact in wind farms," Renewable Energy, Elsevier, vol. 36(3), pages 1125-1132.
    3. van Etten, Jacob, 2017. "R Package gdistance: Distances and Routes on Geographical Grids," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i13).
    4. Knoepfel, Ivo H., 1996. "A framework for environmental impact assessment of long-distance energy transport systems," Energy, Elsevier, vol. 21(7), pages 693-702.
    5. Betakova, Vendula & Vojar, Jiri & Sklenicka, Petr, 2015. "Wind turbines location: How many and how far?," Applied Energy, Elsevier, vol. 151(C), pages 23-31.
    6. Sumper, Andreas & Boix-Aragonès, Oriol & Villafáfila-Robles, Roberto & Bergas-Jané, Joan & Ramírez-Pisco, Rodrigo, 2010. "Methodology for the assessment of the impact of existing high voltage lines in urban areas," Energy Policy, Elsevier, vol. 38(10), pages 6036-6044, October.
    7. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    8. Lienert, Pascal & Suetterlin, Bernadette & Siegrist, Michael, 2015. "Public acceptance of the expansion and modification of high-voltage power lines in the context of the energy transition," Energy Policy, Elsevier, vol. 87(C), pages 573-583.
    9. Kaldellis, J.K. & Kapsali, M. & Kaldelli, El. & Katsanou, Ev., 2013. "Comparing recent views of public attitude on wind energy, photovoltaic and small hydro applications," Renewable Energy, Elsevier, vol. 52(C), pages 197-208.
    10. Ran Xu & Stephen Wittkopf & Christian Roeske, 2017. "Quantitative Evaluation of BIPV Visual Impact in Building Retrofits Using Saliency Models," Energies, MDPI, vol. 10(5), pages 1-16, May.
    11. Matthew Cotton & Patrick Devine-Wright, 2013. "Putting pylons into place: a UK case study of public perspectives on the impacts of high voltage overhead transmission lines," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(8), pages 1225-1245, October.
    12. Fernandez-Jimenez, L. Alfredo & Mendoza-Villena, Montserrat & Zorzano-Santamaria, Pedro & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro & Zorzano-Alba, Enrique & Falces, Alberto, 2015. "Site selection for new PV power plants based on their observability," Renewable Energy, Elsevier, vol. 78(C), pages 7-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salak, B. & Lindberg, K. & Kienast, F. & Hunziker, M., 2021. "How landscape-technology fit affects public evaluations of renewable energy infrastructure scenarios. A hybrid choice model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    3. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Olivier JOALLAND & Tina RAMBONILAZA, 2017. "Assessing the impact of renewable energy infrastructure on the “tourist value” in rural landscapes: a spatial hedonic approach," Cahiers du GREThA (2007-2019) 2017-10, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    5. Jarry T. Porsius & Liesbeth Claassen & Fred Woudenberg & Tjabe Smid & Danielle R. M. Timmermans, 2017. "“These Power Lines Make Me Ill”: A Typology of Residents’ Health Responses to a New High‐Voltage Power Line," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2276-2288, December.
    6. Fink, Simon & Ruffing, Eva, 2020. "Learning in iterated consultation procedures – The example of the German electricity grid demand planning," Utilities Policy, Elsevier, vol. 65(C).
    7. Botelho, Anabela & Lourenço-Gomes, Lina & Pinto, Lígia & Sousa, Sara & Valente, Marieta, 2017. "Accounting for local impacts of photovoltaic farms: The application of two stated preferences approaches to a case-study in Portugal," Energy Policy, Elsevier, vol. 109(C), pages 191-198.
    8. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    9. Citlaly Pérez & Pedro Ponce & Alan Meier & Lourdes Dorantes & Jorge Omar Sandoval & Javier Palma & Arturo Molina, 2022. "S4 Framework for the Integration of Solar Energy Systems in Small and Medium-Sized Manufacturing Companies in Mexico," Energies, MDPI, vol. 15(19), pages 1-28, September.
    10. Scognamiglio, Alessandra, 2016. "‘Photovoltaic landscapes’: Design and assessment. A critical review for a new transdisciplinary design vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 629-661.
    11. Peri, Erez & Tal, Alon, 2020. "A sustainable way forward for wind power: Assessing turbines’ environmental impacts using a holistic GIS analysis," Applied Energy, Elsevier, vol. 279(C).
    12. Sánchez-Pantoja, Núria & Vidal, Rosario & Pastor, M. Carmen, 2018. "Aesthetic impact of solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 227-238.
    13. Kim, Byungil & Han, SangUk & Heo, Jae & Jung, Jaehoon, 2020. "Proof-of-concept of a two-stage approach for selecting suitable slopes on a highway network for solar photovoltaic systems: A case study in South Korea," Renewable Energy, Elsevier, vol. 151(C), pages 366-377.
    14. Sütterlin, Bernadette & Siegrist, Michael, 2017. "Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power," Energy Policy, Elsevier, vol. 106(C), pages 356-366.
    15. Tsantopoulos, Georgios & Arabatzis, Garyfallos & Tampakis, Stilianos, 2014. "Public attitudes towards photovoltaic developments: Case study from Greece," Energy Policy, Elsevier, vol. 71(C), pages 94-106.
    16. Wróżyński, Rafał & Sojka, Mariusz & Pyszny, Krzysztof, 2016. "The application of GIS and 3D graphic software to visual impact assessment of wind turbines," Renewable Energy, Elsevier, vol. 96(PA), pages 625-635.
    17. Salak, B. & Kienast, F. & Olschewski, R. & Spielhofer, R. & Wissen Hayek, U. & Grêt-Regamey, A. & Hunziker, M., 2022. "Impact on the perceived landscape quality through renewable energy infrastructure. A discrete choice experiment in the context of the Swiss energy transition," Renewable Energy, Elsevier, vol. 193(C), pages 299-308.
    18. Oudes, D. & Stremke, S., 2021. "Next generation solar power plants? A comparative analysis of frontrunner solar landscapes in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Scheer, Dirk & Konrad, Wilfried & Wassermann, Sandra, 2017. "The good, the bad, and the ambivalent: A qualitative study of public perceptions towards energy technologies and portfolios in Germany," Energy Policy, Elsevier, vol. 100(C), pages 89-100.
    20. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1576-:d:114669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.