IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v7y2019i2p24-d235466.html
   My bibliography  Save this article

On Using the t -Ratio as a Diagnostic

Author

Listed:
  • Jan R. Magnus

    (Department of Econometrics and Operations Research, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands)

Abstract

The t -ratio has not one but two uses in econometrics, which should be carefully distinguished. It is used as a test and also as a diagnostic. I emphasize that the commonly-used estimators are in fact pretest estimators, and argue in favor of an improved (continuous) version of pretesting, called model averaging.

Suggested Citation

  • Jan R. Magnus, 2019. "On Using the t -Ratio as a Diagnostic," Econometrics, MDPI, vol. 7(2), pages 1-3, May.
  • Handle: RePEc:gam:jecnmx:v:7:y:2019:i:2:p:24-:d:235466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/7/2/24/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/7/2/24/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Keuzenkamp, Hugo A. & Magnus, Jan R., 1995. "On tests and significance in econometrics," Journal of Econometrics, Elsevier, vol. 67(1), pages 5-24, May.
    2. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    3. Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2018. "Balanced Variable Addition In Linear Models," Journal of Economic Surveys, Wiley Blackwell, vol. 32(4), pages 1183-1200, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    2. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    3. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    4. Wan, Alan T.K. & Zhang, Xinyu & Zou, Guohua, 2010. "Least squares model averaging by Mallows criterion," Journal of Econometrics, Elsevier, vol. 156(2), pages 277-283, June.
    5. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    6. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    7. Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
    8. Adam Gorajek & Joel Bank & Andrew Staib & Benjamin Malin & Hamish Fitchett, 2021. "Star Wars at Central Banks," RBA Research Discussion Papers rdp2021-02, Reserve Bank of Australia.
    9. Thomas Mayer, 2012. "Ziliak and McCloskey's Criticisms of Significance Tests: An Assessment," Econ Journal Watch, Econ Journal Watch, vol. 9(3), pages 256-297, September.
    10. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    11. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
    12. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
    13. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    14. Shaobo Jin, 2022. "Frequentist Model Averaging in Structure Equation Model With Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1130-1145, September.
    15. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Thomas Mayer, 2006. "The Empirical Significance of Econometric Models," Working Papers 620, University of California, Davis, Department of Economics.
    17. Zhipeng Liao & Xiaoxia Shi, 2020. "A nondegenerate Vuong test and post selection confidence intervals for semi/nonparametric models," Quantitative Economics, Econometric Society, vol. 11(3), pages 983-1017, July.
    18. Juan Carlos Escanciano & Kyungchul Song, 2007. "Asymptotically Optimal Tests for Single-Index Restrictions with a Focus on Average Partial Effects," PIER Working Paper Archive 07-005, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    19. Hassler, Uwe, 2010. "Testing regression coefficients after model selection through sign restrictions," Economics Letters, Elsevier, vol. 107(2), pages 220-223, May.
    20. Kascha, Christian & Trenkler, Carsten, 2011. "Bootstrapping the likelihood ratio cointegration test in error correction models with unknown lag order," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1008-1017, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:7:y:2019:i:2:p:24-:d:235466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.