IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v6y2018i2p16-d138012.html
   My bibliography  Save this article

Data-Driven Jump Detection Thresholds for Application in Jump Regressions

Author

Listed:
  • Robert Davies

    (Amazon.com, 399 Fairview Ave N, Seattle, WA 98109, USA)

  • George Tauchen

    (Department of Economics, Duke University, Durham, NC 27708, USA)

Abstract

This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most likely to encounter that the usual in-fill asymptotics provide a poor guide for selecting the jump threshold. Because of this we develop a sample-based method. Our method estimates the number of jumps over a grid of thresholds and selects the optimal threshold at what we term the ‘take-off’ point in the estimated number of jumps. We show that this method consistently estimates the jumps and their indices as the sampling interval goes to zero. In several Monte Carlo studies we evaluate the performance of our method based on its ability to accurately locate jumps and its ability to distinguish between true jumps and large diffusive moves. In one of these Monte Carlo studies we evaluate the performance of our method in a jump regression context. Finally, we apply our method in two empirical studies. In one we estimate the number of jumps and report the jump threshold our method selects for three commonly used market indices. In the other empirical application we perform a series of jump regressions using our method to select the jump threshold.

Suggested Citation

  • Robert Davies & George Tauchen, 2018. "Data-Driven Jump Detection Thresholds for Application in Jump Regressions," Econometrics, MDPI, vol. 6(2), pages 1-25, March.
  • Handle: RePEc:gam:jecnmx:v:6:y:2018:i:2:p:16-:d:138012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/6/2/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/6/2/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen, Torben G. & Bondarenko, Oleg & Todorov, Viktor & Tauchen, George, 2015. "The fine structure of equity-index option dynamics," Journal of Econometrics, Elsevier, vol. 187(2), pages 532-546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
    2. Song, Xinyu & Kim, Donggyu & Yuan, Huiling & Cui, Xiangyu & Lu, Zhiping & Zhou, Yong & Wang, Yazhen, 2021. "Volatility analysis with realized GARCH-Itô models," Journal of Econometrics, Elsevier, vol. 222(1), pages 393-410.
    3. Johnson, James A. & Medeiros, Marcelo C. & Paye, Bradley S., 2022. "Jumps in stock prices: New insights from old data," Journal of Financial Markets, Elsevier, vol. 60(C).
    4. Donggyu Kim & Minseog Oh, 2024. "Dynamic Realized Minimum Variance Portfolio Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1238-1249, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    2. Fan, Zhenzhen & Londono, Juan M. & Xiao, Xiao, 2022. "Equity tail risk and currency risk premiums," Journal of Financial Economics, Elsevier, vol. 143(1), pages 484-503.
    3. Chang, Chia-Lin & McAleer, Michael, 2015. "Econometric analysis of financial derivatives: An overview," Journal of Econometrics, Elsevier, vol. 187(2), pages 403-407.
    4. Chang, C-L. & McAleer, M.J., 2014. "Econometric Analysis of Financial Derivatives," Econometric Institute Research Papers EI 2015-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Dalderop, Jeroen, 2020. "Nonparametric filtering of conditional state-price densities," Journal of Econometrics, Elsevier, vol. 214(2), pages 295-325.
    6. Hounyo, Ulrich & Varneskov, Rasmus T., 2020. "Inference for local distributions at high sampling frequencies: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 215(1), pages 1-34.
    7. Zhenzhen Fan & Juan M. Londono & Xiao Xiao, 2019. "US Equity Tail Risk and Currency Risk Premia," International Finance Discussion Papers 1253, Board of Governors of the Federal Reserve System (U.S.).
    8. Ronald Gallant, A. & Tauchen, George, 2018. "Exact Bayesian moment based inference for the distribution of the small-time movements of an Itô semimartingale," Journal of Econometrics, Elsevier, vol. 205(1), pages 140-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:6:y:2018:i:2:p:16-:d:138012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.