Data Balancing Techniques for Predicting Student Dropout Using Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sergi Rovira & Eloi Puertas & Laura Igual, 2017. "Data-driven system to predict academic grades and dropout," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
- Miguel Angel Valles-Coral & Luis Salazar-Ramírez & Richard Injante & Edwin Augusto Hernandez-Torres & Juan Juárez-Díaz & Jorge Raul Navarro-Cabrera & Lloy Pinedo & Pierre Vidaurre-Rojas, 2022. "Density-Based Unsupervised Learning Algorithm to Categorize College Students into Dropout Risk Levels," Data, MDPI, vol. 7(11), pages 1-18, November.
- Valentim Realinho & Jorge Machado & Luís Baptista & Mónica V. Martins, 2022. "Predicting Student Dropout and Academic Success," Data, MDPI, vol. 7(11), pages 1-17, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Raghul Gandhi Venkatesan & Dhivya Karmegam & Bagavandas Mappillairaju, 2024. "Exploring statistical approaches for predicting student dropout in education: a systematic review and meta-analysis," Journal of Computational Social Science, Springer, vol. 7(1), pages 171-196, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miguel Angel Valles-Coral & Luis Salazar-Ramírez & Richard Injante & Edwin Augusto Hernandez-Torres & Juan Juárez-Díaz & Jorge Raul Navarro-Cabrera & Lloy Pinedo & Pierre Vidaurre-Rojas, 2022. "Density-Based Unsupervised Learning Algorithm to Categorize College Students into Dropout Risk Levels," Data, MDPI, vol. 7(11), pages 1-18, November.
- Fedriani Martel, Eugenio M. & Romano Paguillo, Inmaculada, 2017. "Análisis cualitativo comparativo difuso para determinar influencias entre variables socio-económicas y el rendimiento académico de los universitarios || Fuzzy-Set Qualitative Comparative Analysis to D," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 250-269, Diciembre.
More about this item
Keywords
student dropout; prediction; machine learning; classification; data sampling; imbalanced datasets;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:8:y:2023:i:3:p:49-:d:1081633. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.