IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v7y2022i2p23-d749286.html
   My bibliography  Save this article

Dataset for the Heat-Up and Heat Transfer towards Single Particles and Synthetic Particle Clusters from Particle-Resolved CFD Simulations

Author

Listed:
  • Mario Pichler

    (Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
    These authors contributed equally to this work.)

  • Markus Bösenhofer

    (Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
    Area 4—Simulation and Analyses, K1-MET GmbH, Stahlstraße 14, 4020 Linz, Austria
    These authors contributed equally to this work.)

  • Michael Harasek

    (Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien, Getreidemarkt 9/166, 1060 Vienna, Austria)

Abstract

Heat transfer to particles is a key aspect of thermo-chemical conversion of pulverized fuels. These fuels tend to agglomerate in some areas of turbulent flow and to form particle clusters. Heat transfer and drag of such clusters are significantly different from single-particle approximations commonly used in Euler–Lagrange models. This fact prompted a direct numerical investigation of the heat transfer and drag behavior of synthetic particle clusters consisting of 44 spheres of uniform diameter (60 μ m). Particle-resolved computational fluid dynamic simulations were carried out to investigate the heat fluxes, the forces acting upon the particle cluster, and the heat-up times of particle clusters with multiple void fractions (0.477–0.999) and varying relative velocities (0.5–25 m/s). The integral heat fluxes and exact particle positions for each particle in the cluster, integral heat fluxes, and the total acting force, derived from steady-state simulations, are reported for 85 different cases. The heat-up times of individual particles and the particle clusters are provided for six cases (three cluster void fractions and two relative velocities each). Furthermore, the heat-up times of single particles with different commonly used representative particle diameters are presented. Depending on the case, the particle Reynolds number, the cluster void fraction, the Nusselt number, and the cluster drag coefficient are included in the secondary data.

Suggested Citation

  • Mario Pichler & Markus Bösenhofer & Michael Harasek, 2022. "Dataset for the Heat-Up and Heat Transfer towards Single Particles and Synthetic Particle Clusters from Particle-Resolved CFD Simulations," Data, MDPI, vol. 7(2), pages 1-13, February.
  • Handle: RePEc:gam:jdataj:v:7:y:2022:i:2:p:23-:d:749286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/7/2/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/7/2/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yin, Chungen, 2015. "On gas and particle radiation in pulverized fuel combustion furnaces," Applied Energy, Elsevier, vol. 157(C), pages 554-561.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Pörtner & Ying Gu & Martin Schiemann, 2020. "Investigation of Pulverized Biomass and Coal Char Emissivity," Energies, MDPI, vol. 13(18), pages 1-11, September.
    2. Laubscher, Ryno & Rousseau, Pieter, 2020. "Numerical investigation on the impact of variable particle radiation properties on the heat transfer in high ash pulverized coal boiler through co-simulation," Energy, Elsevier, vol. 195(C).
    3. Rousseau, Pieter & Laubscher, Ryno, 2020. "Analysis of the impact of coal quality on the heat transfer distribution in a high-ash pulverized coal boiler using co-simulation," Energy, Elsevier, vol. 198(C).
    4. Jin, Donghao & Yan, Jingwen & Liu, Xin & Zhang, Chaoqun & Wang, Heyang, 2023. "Prediction of tube temperature distribution of boiler platen superheater by a coupled combustion and hydrodynamic model," Energy, Elsevier, vol. 279(C).
    5. Guo, Junjun & Liu, Zhaohui & Hu, Fan & Li, Pengfei & Luo, Wei & Huang, Xiaohong, 2018. "A compatible configuration strategy for burner streams in a 200 MWe tangentially fired oxy-fuel combustion boiler," Applied Energy, Elsevier, vol. 220(C), pages 59-69.
    6. von Bohnstein, Maximilian & Richter, Marcel & Graeser, Phillip & Schiemann, Martin & Ströhle, Jochen & Epple, Bernd, 2021. "3D CFD simulation of a 250 MWel oxy-fuel boiler with evaluation of heat radiation calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Bordbar, Hadi & Maximov, Alexander & Hyppänen, Timo, 2019. "Improved banded method for spectral thermal radiation in participating media with spectrally dependent wall emittance," Applied Energy, Elsevier, vol. 235(C), pages 1090-1105.
    8. Hyunbin Jo & Jongkeun Park & Woosuk Kang & Junseok Hong & Sungmin Yoon & Howon Ra & Changkook Ryu, 2021. "Influence of Uneven Secondary Air Supply and Burner Tilt on Flow Pattern, Heat Transfer, and NOx Emissions in a 500 MWe Tangential-Firing Coal Boiler," Energies, MDPI, vol. 14(24), pages 1-18, December.
    9. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    10. Yang, Xin & Clements, Alastair & Szuhánszki, János & Huang, Xiaohong & Farias Moguel, Oscar & Li, Jia & Gibbins, Jon & Liu, Zhaohui & Zheng, Chuguang & Ingham, Derek & Ma, Lin & Nimmo, Bill & Pourkash, 2018. "Prediction of the radiative heat transfer in small and large scale oxy-coal furnaces," Applied Energy, Elsevier, vol. 211(C), pages 523-537.
    11. Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
    12. Ma, Lun & Fang, Qingyan & Yin, Chungen & Wang, Huajian & Zhang, Cheng & Chen, Gang, 2019. "A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions," Applied Energy, Elsevier, vol. 238(C), pages 453-465.
    13. Ma, Lun & Fang, Qingyan & Tan, Peng & Zhang, Cheng & Chen, Gang & Lv, Dangzhen & Duan, Xuenong & Chen, Yiping, 2016. "Effect of the separated overfire air location on the combustion optimization and NOx reduction of a 600MWe FW down-fired utility boiler with a novel combustion system," Applied Energy, Elsevier, vol. 180(C), pages 104-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:7:y:2022:i:2:p:23-:d:749286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.