IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v5y2020i4p101-d436239.html
   My bibliography  Save this article

Dataset for Assessing the Economic Performance of a Residential PV Plant: The Analysis of a New Policy Proposal

Author

Listed:
  • Idiano D’Adamo

    (Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy)

  • Massimo Gastaldi

    (Department of Industrial Engineering, Information and Economics, University of L’Aquila, Via G. Gronchi 18, 67100 L’Aquila, Italy)

  • Piergiuseppe Morone

    (Department of Law and Economics, Unitelma Sapienza–University of Rome, Viale Regina Elena 295, 00161 Roma, Italy)

Abstract

This data article aims at providing a data description about the manuscript entitled “The post COVID-19 green recovery in practice: assessing the profitability of a policy proposal on residential photovoltaic plants”. The definition of a business plan is a complex decision because the choice of the input data significantly influences the economic assessment of a project. An Excel file is used to construct an economic model based on the Discounted Cash Flow (DCF) methodology using Net Present Value (NPV) as an indicator. The choice of input data is defined by literature analysis, and policy proposals are identified by the Revival Decree adopted by Italian Government to contrast human and economic shock effected by COVID-19. The aggregation of these data enabled us to obtain both baseline and alternative scenarios to define if the realization of a residential photovoltaic (PV) plant is economically feasible. Similar data can be obtained for other countries according to the policy actions adopted, and this work can be easily replicated in different geographical contexts and considering varying categories of stakeholders (e.g., consumers, which are called upon to implement a green transition).

Suggested Citation

  • Idiano D’Adamo & Massimo Gastaldi & Piergiuseppe Morone, 2020. "Dataset for Assessing the Economic Performance of a Residential PV Plant: The Analysis of a New Policy Proposal," Data, MDPI, vol. 5(4), pages 1-5, October.
  • Handle: RePEc:gam:jdataj:v:5:y:2020:i:4:p:101-:d:436239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/5/4/101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/5/4/101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The post COVID-19 green recovery in practice: Assessing the profitability of a policy proposal on residential photovoltaic plants," Energy Policy, Elsevier, vol. 147(C).
    2. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Luca Cedola, 2019. "Performance and Economic Assessment of a Grid-Connected Photovoltaic Power Plant with a Storage System: A Comparison between the North and the South of Italy," Energies, MDPI, vol. 12(12), pages 1-25, June.
    3. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    4. Luthander, Rasmus & Widén, Joakim & Munkhammar, Joakim & Lingfors, David, 2016. "Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment," Energy, Elsevier, vol. 112(C), pages 221-231.
    5. Marcus Eichhorn & Mattes Scheftelowitz & Matthias Reichmuth & Christian Lorenz & Kyriakos Louca & Alexander Schiffler & Rita Keuneke & Martin Bauschmann & Jens Ponitka & David Manske & Daniela Thrän, 2019. "Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany," Data, MDPI, vol. 4(1), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).
    2. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "Solar collective self-consumption: Economic analysis of a policy mix," Ecological Economics, Elsevier, vol. 199(C).
    3. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    4. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The post COVID-19 green recovery in practice: Assessing the profitability of a policy proposal on residential photovoltaic plants," Energy Policy, Elsevier, vol. 147(C).
    5. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    6. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    7. Abraham Alem Kebede & Maitane Berecibar & Thierry Coosemans & Maarten Messagie & Towfik Jemal & Henok Ayele Behabtu & Joeri Van Mierlo, 2020. "A Techno-Economic Optimization and Performance Assessment of a 10 kW P Photovoltaic Grid-Connected System," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    8. Luo, Shunjun & Zhang, Shaohui, 2022. "How R&D expenditure intermediate as a new determinants for low carbon energy transition in Belt and Road Initiative economies," Renewable Energy, Elsevier, vol. 197(C), pages 101-109.
    9. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    10. Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
    11. Mengmeng Meng & Weiguo Fan & Jianchang Lu & Xiaobin Dong & Hejie Wei, 2020. "Research on the Influence of Energy Utilization and Economic Development on Human Well-Being in Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    12. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    13. Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
    14. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    15. David Manske & Lukas Grosch & Julius Schmiedt & Nora Mittelstädt & Daniela Thrän, 2022. "Geo-Locations and System Data of Renewable Energy Installations in Germany," Data, MDPI, vol. 7(9), pages 1-15, September.
    16. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    17. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    18. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    19. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    20. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:5:y:2020:i:4:p:101-:d:436239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.