IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v4y2019i3p109-d252301.html
   My bibliography  Save this article

Prediction of Fault Fix Time Transition in Large-Scale Open Source Project Data

Author

Listed:
  • Hironobu Sone

    (Graduate School of Integrative Science and Engineering, Tokyo City University, Setagaya, Tokyo 158-8557, Japan)

  • Yoshinobu Tamura

    (Department of Intelligent Systems, Tokyo City University, Setagaya, Tokyo 158-8557, Japan
    These authors contributed equally to this work.)

  • Shigeru Yamada

    (Graduate School of Engineering, Tottori University, Tottori, Tottori 680-8552, Japan
    These authors contributed equally to this work.)

Abstract

Open source software (OSS) programs are adopted as embedded systems regarding their server usage, due to their quick delivery, cost reduction, and standardization of systems. Many OSS programs are developed using the peculiar style known as the bazaar method, in which faults are detected and fixed by developers around the world, and the result is then reflected in the next release. Furthermore, the fix time of faults tends to be shorter as the development of the OSS progresses. However, several large-scale open source projects encounter the problem that fault fixing takes much time because the fault corrector cannot handle many fault reports. Therefore, OSS users and project managers need to know the stability degree of open source projects by determining the fault fix time. In this paper, we predict the transition of the fix time in large-scale open source projects. To make the prediction, we use the software reliability growth model based on the Wiener process considering that the fault fix time in open source projects changes depending on various factors such as the fault reporting time and the assignees to fix the faults. In addition, we discuss the assumption that fault fix time data depend on the prediction of the transition in fault fixing time.

Suggested Citation

  • Hironobu Sone & Yoshinobu Tamura & Shigeru Yamada, 2019. "Prediction of Fault Fix Time Transition in Large-Scale Open Source Project Data," Data, MDPI, vol. 4(3), pages 1-12, July.
  • Handle: RePEc:gam:jdataj:v:4:y:2019:i:3:p:109-:d:252301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/4/3/109/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/4/3/109/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P.K. Kapur & Hoang Pham & A. Gupta & P.C. Jha, 2011. "Software Reliability Assessment with OR Applications," Springer Series in Reliability Engineering, Springer, number 978-0-85729-204-9, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshinobu Tamura & Shoichiro Miyamoto & Lei Zhou & Adarsh Anand & P. K. Kapur & Shigeru Yamada, 2024. "OSS reliability assessment method based on deep learning and independent Wiener data preprocessing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2668-2676, June.
    2. Viral Gupta & P. K. Kapur & Deepak Kumar, 2019. "Prioritizing and Optimizing Disaster Recovery Solution using Analytic Network Process and Multi Attribute Utility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 171-207, January.
    3. Snigdha Malhotra & Vernika Agarwal & P. K. Kapur, 2022. "Hierarchical framework for analysing the challenges of implementing industrial Internet of Things in manufacturing industries using ISM approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2356-2370, October.
    4. Vibha Verma & Sameer Anand & P. K. Kapur & Anu G. Aggarwal, 2022. "Unified framework to assess software reliability and determine optimal release time in presence of fault reduction factor, error generation and fault removal efficiency," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2429-2441, October.
    5. Yeh, Wei-Chang, 2017. "Evaluation of the one-to-all-target-subsets reliability of a novel deterioration-effect acyclic multi-state information network," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 132-137.
    6. Subhashis Chatterjee & Ankur Shukla, 2016. "Change point–based software reliability model under imperfect debugging with revised concept of fault dependency," Journal of Risk and Reliability, , vol. 230(6), pages 579-597, December.
    7. Shakshi Singhal & P. K. Kapur & Vivek Kumar & Saurabh Panwar, 2024. "Stochastic debugging based reliability growth models for Open Source Software project," Annals of Operations Research, Springer, vol. 340(1), pages 531-569, September.
    8. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 2020. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 196-207, July.
    9. Avinash K. Shrivastava & Armaan Singh Ahluwalia & P. K. Kapur, 0. "On interdisciplinarity between product adoption and vulnerability discovery modeling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    10. Avinash K. Shrivastava & Armaan Singh Ahluwalia & P. K. Kapur, 2021. "On interdisciplinarity between product adoption and vulnerability discovery modeling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 176-187, February.
    11. Yoshinobu Tamura & Shigeru Yamada, 2022. "Prototype of 3D Reliability Assessment Tool Based on Deep Learning for Edge OSS Computing," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    12. Vikas Dhaka & Nidhi Nijhawan, 2024. "Effect of change in environment on reliability growth modeling integrating fault reduction factor and change point: a general approach," Annals of Operations Research, Springer, vol. 340(1), pages 181-215, September.
    13. Ankur Choudhary & Anurag Singh Baghel & Om Prakash Sangwan, 2017. "An efficient parameter estimation of software reliability growth models using gravitational search algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 79-88, March.
    14. Yoshinobu Tamura & Shigeru Yamada, 2022. "Maintenance effort management based on double jump diffusion model for OSS project," Annals of Operations Research, Springer, vol. 312(1), pages 411-426, May.
    15. Ranjan Kumar & Subhash Kumar & Sanjay K. Tiwari, 2019. "A study of software reliability on big data open source software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 242-250, April.
    16. Misbah Anjum & Vernika Agarwal & P. K. Kapur & Sunil Kumar Khatri, 2020. "Two-phase methodology for prioritization and utility assessment of software vulnerabilities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 289-300, July.
    17. Kamlesh Kumar Raghuvanshi & Arun Agarwal & Khushboo Jain & V. B. Singh, 2022. "A generalized prediction model for improving software reliability using time-series modelling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1309-1320, June.
    18. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    19. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    20. Yogita Kansal & Gurinder Singh & Uday Kumar & P. K. Kapur, 2016. "Optimal release and patching time of software with warranty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 462-468, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:4:y:2019:i:3:p:109-:d:252301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.