IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v3y2018i4p54-d185259.html
   My bibliography  Save this article

Performance Analysis of Statistical and Supervised Learning Techniques in Stock Data Mining

Author

Listed:
  • Manik Sharma

    (Department of Computer Science and Applications, DAV University, Jalandhar 144401, India)

  • Samriti Sharma

    (Department of Computer Science, Guru Nanak Dev University, Amritar 143001, India)

  • Gurvinder Singh

    (Department of Computer Science, Guru Nanak Dev University, Amritar 143001, India)

Abstract

Nowadays, overwhelming stock data is available, which areonly of use if it is properly examined and mined. In this paper, the last twelve years of ICICI Bank’s stock data have been extensively examined using statistical and supervised learning techniques. This study may be of great interest for those who wish to mine or study the stock data of banks or any financial organization. Different statistical measures have been computed to explore the nature, range, distribution, and deviation of data. The different descriptive statistical measures assist in finding different valuable metrics such as mean, variance, skewness, kurtosis, p -value, a-squared, and 95% confidence mean interval level of ICICI Bank’s stock data. Moreover, daily percentage changes occurring over the last 12 years have also been recorded and examined. Additionally, the intraday stock status has been mined using ten different classifiers. The performance of different classifiers has been evaluated on the basis of various parameters such as accuracy, misclassification rate, precision, recall, specificity, and sensitivity. Based upon different parameters, the predictive results obtained using logistic regression are more acceptable than the outcomes of other classifiers, whereas naïve Bayes, C4.5, random forest, linear discriminant, and cubic support vector machine (SVM) merely act as a random guessing machine. The outstanding performance of logistic regression has been validated using TOPSIS (technique for order preference by similarity to ideal solution) and WSA (weighted sum approach).

Suggested Citation

  • Manik Sharma & Samriti Sharma & Gurvinder Singh, 2018. "Performance Analysis of Statistical and Supervised Learning Techniques in Stock Data Mining," Data, MDPI, vol. 3(4), pages 1-16, November.
  • Handle: RePEc:gam:jdataj:v:3:y:2018:i:4:p:54-:d:185259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/3/4/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/3/4/54/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamada, Robert, et al, 1988. "The Role of Statistics in Accounting, Marketing, Finance, and Production," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(2), pages 261-272, April.
    2. Minjian Ye & Guangzhong Li, 2017. "Internet big data and capital markets: a literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-18, December.
    3. Mehdi Khashei & Zahra Hajirahimi, 2017. "Performance evaluation of series and parallel strategies for financial time series forecasting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-24, December.
    4. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    5. Sarat Chandra Nayak & Bijan Bihari Misra, 2018. "Estimating stock closing indices using a GA-weighted condensed polynomial neural network," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Mallikarjuna & R. Prabhakara Rao, 2019. "Evaluation of forecasting methods from selected stock market returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-16, December.
    2. Jihong Xiao & Xuehong Zhu & Chuangxia Huang & Xiaoguang Yang & Fenghua Wen & Meirui Zhong, 2019. "A New Approach for Stock Price Analysis and Prediction Based on SSA and SVM," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 287-310, January.
    3. Rohit Agrawal & Vishal A. Wankhede & Anil Kumar & Sunil Luthra, 2021. "Analysing the roadblocks of circular economy adoption in the automobile sector: Reducing waste and environmental perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1051-1066, February.
    4. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    7. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    8. Alaa Khadra & Mårten Hugosson & Jan Akander & Jonn Are Myhren, 2020. "Development of a Weight Factor Method for Sustainability Decisions in Building Renovation. Case Study Using Renobuild," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    9. Silvia Muzzioli & Luca Gambarelli & Bernard De Baets, 2018. "Indices for Financial Market Volatility Obtained Through Fuzzy Regression," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1659-1691, November.
    10. Martin Straka, 2021. "Design of a Computer-Aided Location Expert System Based on a Mathematical Approach," Mathematics, MDPI, vol. 9(9), pages 1-25, May.
    11. Darabseh Mohammad & Martins João Poças, 2023. "Protecting the intellectual property of built environment designs using blockchain technology," Organization, Technology and Management in Construction, Sciendo, vol. 15(1), pages 157-168, January.
    12. Gerda Ana Melnik-Leroy & Gintautas Dzemyda, 2021. "How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases," Mathematics, MDPI, vol. 9(2), pages 1-25, January.
    13. Francesco Ciardiello & Andrea Genovese, 2023. "A comparison between TOPSIS and SAW methods," Annals of Operations Research, Springer, vol. 325(2), pages 967-994, June.
    14. Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    15. Wątróbski, Jarosław & Jankowski, Jarosław & Ziemba, Paweł & Karczmarczyk, Artur & Zioło, Magdalena, 2019. "Generalised framework for multi-criteria method selection," Omega, Elsevier, vol. 86(C), pages 107-124.
    16. Mateusz Hämmerling & Joanna Kocięcka & Stanisław Zaborowski, 2021. "AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    17. Nansheng Pang & Mengfan Nan & Qichen Meng & Siyang Zhao, 2021. "Selection of Wind Turbine Based on Fuzzy Analytic Network Process: A Case Study in China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    18. Hugo Díaz & C. Guedes Soares, 2022. "Multicriteria Decision Approach to the Design of Floating Wind Farm Export Cables," Energies, MDPI, vol. 15(18), pages 1-18, September.
    19. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Cao, Minhao & Guo, Jianjun & Xiao, Hui & Wu, Liang, 2022. "Reliability analysis and optimal generator allocation and protection strategy of a non-repairable power grid system," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:3:y:2018:i:4:p:54-:d:185259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.