IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v12y2021i2p32-d692596.html
   My bibliography  Save this article

A Call to Broaden Investment in Drinking Water Testing and Community Outreach Programs

Author

Listed:
  • Jason A. Hubbart

    (Institute of Water Security and Science, West Virginia University, Agricultural Sciences Building, Morgantown, WV 26506, USA
    Division of Plant and Soil Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Agricultural Sciences Building, Morgantown, WV 26506, USA
    Division of Forestry and Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Agricultural Sciences Building, Morgantown, WV 26506, USA)

  • Kaylyn S. Gootman

    (Institute of Water Security and Science, West Virginia University, Agricultural Sciences Building, Morgantown, WV 26506, USA)

Abstract

Ensuring access to safe drinking water is a challenge in many parts of the world for reasons including, but not limited to, infrastructure age, source water impairment, limited community finances and limitations in Federal water protections. Water quality crises and the prevalence of impaired waters globally highlight the need for investment in the expansion of drinking water testing that includes public and private water systems, as well as community outreach. We provide justification including a case example to argue the merits of developing drinking water testing and community outreach programs that include drinking water testing and non-formal education (i.e., public outreach) regarding the importance of drinking water quality testing for human well-being and security. Organizers of drinking water testing programs should: (1) test drinking water quality; (2) develop drinking water quality databases; (3) increase public awareness of drinking water issues; (4) build platforms for improved community outreach; and (5) publish program results that illustrate successful program models that are spatially and temporally transferrable. We anticipate that short-term and intermediate outcomes of this strategy would improve access to drinking water testing, facilitate greater understanding of water quality and increase security through inclusive and equitable water quality testing and outreach programs.

Suggested Citation

  • Jason A. Hubbart & Kaylyn S. Gootman, 2021. "A Call to Broaden Investment in Drinking Water Testing and Community Outreach Programs," Challenges, MDPI, vol. 12(2), pages 1-10, December.
  • Handle: RePEc:gam:jchals:v:12:y:2021:i:2:p:32-:d:692596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/12/2/32/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/12/2/32/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vanderslice, J., 2011. "Drinking water infrastructure and environmental disparities: Evidence and methodological considerations," American Journal of Public Health, American Public Health Association, vol. 101(SUPPL. 1), pages 109-114.
    2. Strauss, Peter & Leone, Antonio & Ripa, Maria & Turpin, Nadine & Lescot, Jean-Marie & Laplana, Ramon, 2006. "Using critical source areas for targeting cost-effective best management practices to mitigate phosphorus and sediment transfer at the watershed scale," MPRA Paper 66256, University Library of Munich, Germany.
    3. Michael B Fisher & Leslie Danquah & Zakaria Seidu & Allison N Fechter & Bansaga Saga & Jamie K Bartram & Kaida M Liang & Rohit Ramaswamy, 2020. "WaSH CQI: Applying continuous quality improvement methods to water service delivery in four districts of rural northern Ghana," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    4. Jason A. Hubbart & Kirsten Stephan & Fritz Petersen & Zachary Heck & Jason Horne & B. Jean Meade, 2020. "Challenges for the Island of Barbuda: A Distinct Cultural and Ecological Island Ecosystem at the Precipice of Change," Challenges, MDPI, vol. 11(1), pages 1-13, June.
    5. Hanna-Attisha, M. & LaChance, J. & Sadler, R.C. & Schnepp, A.C., 2016. "Elevated blood lead levels in children associated with the flint drinking water crisis: A spatial analysis of risk and public health response," American Journal of Public Health, American Public Health Association, vol. 106(2), pages 283-290.
    6. Jonathan Lilje & Hans-Joachim Mosler, 2016. "Continuation of Health Behaviors: Psychosocial Factors Sustaining Drinking Water Chlorination in a Longitudinal Study from Chad," Sustainability, MDPI, vol. 8(11), pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson, Heather K. & Price, Heather & Staddon, Sam, 2023. "Water poverty in a ‘Hydro Nation’: Exploring distributional and recognitional water injustice in Scotland," Utilities Policy, Elsevier, vol. 85(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John T. Doyle & Larry Kindness & James Realbird & Margaret J. Eggers & Anne K. Camper, 2018. "Challenges and Opportunities for Tribal Waters: Addressing Disparities in Safe Public Drinking Water on the Crow Reservation in Montana, USA," IJERPH, MDPI, vol. 15(4), pages 1-13, March.
    2. Margaret J. Eggers & John T. Doyle & Myra J. Lefthand & Sara L. Young & Anita L. Moore-Nall & Larry Kindness & Roberta Other Medicine & Timothy E. Ford & Eric Dietrich & Albert E. Parker & Joseph H. H, 2018. "Community Engaged Cumulative Risk Assessment of Exposure to Inorganic Well Water Contaminants, Crow Reservation, Montana," IJERPH, MDPI, vol. 15(1), pages 1-34, January.
    3. Irene Martinez-Morata & Benjamin C. Bostick & Otakuye Conroy-Ben & Dustin T. Duncan & Miranda R. Jones & Maya Spaur & Kevin P. Patterson & Seth J. Prins & Ana Navas-Acien & Anne E. Nigra, 2022. "Nationwide geospatial analysis of county racial and ethnic composition and public drinking water arsenic and uranium," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Nancey Green Leigh & Heonyeong Lee, 2019. "Sustainable and Resilient Urban Water Systems: The Role of Decentralization and Planning," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    5. Rama Natarajan & Dana Aljaber & Dawn Au & Christine Thai & Angelica Sanchez & Alan Nunez & Cristal Resto & Tanya Chavez & Marta M. Jankowska & Tarik Benmarhnia & Jiue-An Yang & Veronica Jones & Jernej, 2020. "Environmental Exposures during Puberty: Window of Breast Cancer Risk and Epigenetic Damage," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    6. Kunwar, Samrat B. & Khatiwada, Niraj & Rahman, Mohammad Mashiur & Liu, Menqui & Thapa, Swati & Bohara, Alok K. & Wang, Jingjing, 2023. "Reimagining Teaching Water Issues through Experiential Learning," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(3), September.
    7. Shan Parker & Vicki Johnson-Lawrence, 2022. "Addressing Trauma-Informed Principles in Public Health through Training and Practice," IJERPH, MDPI, vol. 19(14), pages 1-14, July.
    8. Tuviere Onookome-Okome & Angel Hsu & Dean G. Kilpatrick & Angela Moreland & Aaron Reuben, 2023. "Association of Public Works Disasters with Substance Use Difficulties: Evidence from Flint, Michigan, Five Years after the Water Crisis Onset," IJERPH, MDPI, vol. 20(23), pages 1-12, November.
    9. Deniz Yeter & Ellen C. Banks & Michael Aschner, 2020. "Disparity in Risk Factor Severity for Early Childhood Blood Lead among Predominantly African-American Black Children: The 1999 to 2010 US NHANES," IJERPH, MDPI, vol. 17(5), pages 1-26, February.
    10. Kai Chen & Xiaoping Lin & Han Wang & Yujie Qiang & Jie Kong & Rui Huang & Haining Wang & Hui Liu, 2022. "Visualizing the Knowledge Base and Research Hotspot of Public Health Emergency Management: A Science Mapping Analysis-Based Study," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
    11. Brett Bryan & John Kandulu, 2011. "Designing a Policy Mix and Sequence for Mitigating Agricultural Non-Point Source Pollution in a Water Supply Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 875-892, February.
    12. Rui Wang & Xi Chen & Xun Li, 2022. "Something in the pipe: the Flint water crisis and health at birth," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1723-1749, October.
    13. Yingzhuang Guo & Xiaoyan Wang & Lili Zhou & Charles Melching & Zeqi Li, 2020. "Identification of Critical Source Areas of Nitrogen Load in the Miyun Reservoir Watershed under Different Hydrological Conditions," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    14. Daniel S. Grossman & David J.G. Slusky, 2019. "The Impact of the Flint Water Crisis on Fertility," Demography, Springer;Population Association of America (PAA), vol. 56(6), pages 2005-2031, December.
    15. Tarik Benmarhnia & Ianis Delpla & Lara Schwarz & Manuel J. Rodriguez & Patrick Levallois, 2018. "Heterogeneity in the Relationship between Disinfection By-Products in Drinking Water and Cancer: A Systematic Review," IJERPH, MDPI, vol. 15(5), pages 1-13, May.
    16. Richard Casey Sadler & Amanda Y. Kong & Zachary Buchalski & Erika Renee Chanderraj & Laura A. Carravallah, 2021. "Linking the Flint Food Store Survey: Is Objective or Perceived Access to Healthy Foods Associated with Glycemic Control in Patients with Type 2 Diabetes?," IJERPH, MDPI, vol. 18(19), pages 1-13, September.
    17. Stephen C. Bondy & Arezoo Campbell, 2017. "Water Quality and Brain Function," IJERPH, MDPI, vol. 15(1), pages 1-15, December.
    18. Matthew Tuson & Matthew Yap & Mei Ruu Kok & Bryan Boruff & Kevin Murray & Alistair Vickery & Berwin A. Turlach & David Whyatt, 2022. "Improving the Efficiency of Geographic Target Regions for Healthcare Interventions," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    19. Ivan Pantic & Marcela Tamayo-Ortiz & Antonio Rosa-Parra & Luis Bautista-Arredondo & Robert O. Wright & Karen E. Peterson & Lourdes Schnaas & Stephen J. Rothenberg & Howard Hu & Martha María Téllez-Roj, 2018. "Children’s Blood Lead Concentrations from 1988 to 2015 in Mexico City: The Contribution of Lead in Air and Traditional Lead-Glazed Ceramics," IJERPH, MDPI, vol. 15(10), pages 1-11, September.
    20. Wai Ling Lee & Jie Jia & Yani Bao, 2016. "Identifying the Gaps in Practice for Combating Lead in Drinking Water in Hong Kong," IJERPH, MDPI, vol. 13(10), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:12:y:2021:i:2:p:32-:d:692596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.