IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i8p184-d258802.html
   My bibliography  Save this article

Assessing Topsoil Movement in Rotary Harrowing Process by RFID (Radio-Frequency Identification) Technique

Author

Listed:
  • Ahmed Kayad

    (Department TESAF, University of Padova, viale dell’Università, 16, I-35020 Legnaro (PD), Italy
    Agricultural Engineering Research Institute (AEnRI), Agricultural Research Centre, Giza 12619, Egypt)

  • Riccardo Rainato

    (Department TESAF, University of Padova, viale dell’Università, 16, I-35020 Legnaro (PD), Italy)

  • Lorenzo Picco

    (Department TESAF, University of Padova, viale dell’Università, 16, I-35020 Legnaro (PD), Italy
    Faculty of Engineering, Universidad Austral de Chile, Campus Miraflores, Valdivia 5090000, Chile
    Universidad Austral de Chile, RINA–Natural and Anthropogenic Risks Research Center, Campus Miraflores, Valdivia 5090000, Chile)

  • Luigi Sartori

    (Department TESAF, University of Padova, viale dell’Università, 16, I-35020 Legnaro (PD), Italy)

  • Francesco Marinello

    (Department TESAF, University of Padova, viale dell’Università, 16, I-35020 Legnaro (PD), Italy)

Abstract

Harrowing is a process that reduces the size of soil clods and prepares the field for seeding. Rotary harrows are a common piece of equipment in North Italy that consists of teeth rotating around a vertical axis with a processing depth of 5–15 cm. In this study, the topsoil movement in terms of distance and direction were estimated at different rotary harrow working conditions. A total of eight tests was performed using two forward speeds of 1 and 3 km/h, two working depths of 6 and 10 cm and two levelling bar positions of 0 and 10 cm from the ground. In order to simulate and follow topsoil movement, Radio-Frequency Identification (RFID) tags were inserted into cork stoppers and distributed in a regular pattern over the soil. Tags were distributed in six lines along the working width and repeated in three rows for each test: a total number of 144 tags was tracked. Results showed that there were no significant differences between the performed tests, on the other hand the reported tests highlight the effectiveness of the RFID monitoring approach.

Suggested Citation

  • Ahmed Kayad & Riccardo Rainato & Lorenzo Picco & Luigi Sartori & Francesco Marinello, 2019. "Assessing Topsoil Movement in Rotary Harrowing Process by RFID (Radio-Frequency Identification) Technique," Agriculture, MDPI, vol. 9(8), pages 1-9, August.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:8:p:184-:d:258802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/8/184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/8/184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Kayad & Dimitrios S. Paraforos & Francesco Marinello & Spyros Fountas, 2020. "Latest Advances in Sensor Applications in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-8, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    3. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    4. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    5. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
    6. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    7. Tahereh Soleymani Angili & Katarzyna Grzesik & Anne Rödl & Martin Kaltschmitt, 2021. "Life Cycle Assessment of Bioethanol Production: A Review of Feedstock, Technology and Methodology," Energies, MDPI, vol. 14(10), pages 1-18, May.
    8. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    9. Samaneh Bahrololoum & Mojtaba Mahmood Molaei Kermani & Farzaneh Koohzadi, 2022. "Ecopreneurs and agricultural waste management," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 12(1), pages 47-51, December.
    10. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    11. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    12. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    13. Wei Zhang & Chang Liu & Lingqi Li & Enhui Jiang & Hongjun Zhao, 2024. "The Coupling Coordination Degree and Its Driving Factors for Water–Energy–Food Resources in the Yellow River Irrigation Area of Shandong Province," Sustainability, MDPI, vol. 16(19), pages 1-22, September.
    14. Dandres, Thomas & Gaudreault, Caroline & Tirado-Seco, Pablo & Samson, Réjean, 2011. "Assessing non-marginal variations with consequential LCA: Application to European energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3121-3132, August.
    15. Wiloso, Edi Iswanto & Heijungs, Reinout & de Snoo, Geert R., 2012. "LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5295-5308.
    16. Karlsson, Hanna & Ahlgren, Serina & Strid, Ingrid & Hansson, Per-Anders, 2015. "Faba beans for biorefinery feedstock or feed? Greenhouse gas and energy balances of different applications," Agricultural Systems, Elsevier, vol. 141(C), pages 138-148.
    17. Hoang-Tuong Nguyen Hao & Obulisamy Parthiba Karthikeyan & Kirsten Heimann, 2015. "Bio-Refining of Carbohydrate-Rich Food Waste for Biofuels," Energies, MDPI, vol. 8(7), pages 1-15, June.
    18. McKechnie, Jon & Pourbafrani, Mohammad & Saville, Bradley A. & MacLean, Heather L., 2015. "Exploring impacts of process technology development and regional factors on life cycle greenhouse gas emissions of corn stover ethanol," Renewable Energy, Elsevier, vol. 76(C), pages 726-734.
    19. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    20. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:8:p:184-:d:258802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.