IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i3p37-d135467.html
   My bibliography  Save this article

Carbon and Nitrogen Content of Soil Organic Matter and Microbial Biomass under Long-Term Crop Rotation and Tillage in Illinois, USA

Author

Listed:
  • Stacy M. Zuber

    (Department of Crop Sciences, University of Illinois, 1102 S. Goodwin Ave, Urbana, IL 61801, USA)

  • Gevan D. Behnke

    (Department of Crop Sciences, University of Illinois, 1102 S. Goodwin Ave, Urbana, IL 61801, USA)

  • Emerson D. Nafziger

    (Department of Crop Sciences, University of Illinois, 1102 S. Goodwin Ave, Urbana, IL 61801, USA)

  • Maria B. Villamil

    (Department of Crop Sciences, University of Illinois, 1102 S. Goodwin Ave, Urbana, IL 61801, USA)

Abstract

Crop rotation and tillage alter soil organic matter (SOM) dynamics by influencing the soil environment and microbes carrying out C and N cycling. Our goal was to evaluate the effect of long-term crop rotation and tillage on the quantity of C and N stored in SOM and microbial biomass. Two experimental sites were used to evaluate four rotations—continuous corn ( Zea mays L.) (CCC), corn-soybean ( Glycine max [L.] Merr.) (CS), corn-soybean-wheat ( Triticum aestivum L.) (CSW), and continuous soybean (SSS), each split into chisel tillage (CT) and no-till (NT) subplots. The CSW rotation increased soil organic carbon (SOC) content compared to SSS; SSS also reduced total nitrogen (TN) compared to other rotations. Levels of SOC and TN were 7% and 9% greater under NT than CT, respectively. Rotation did not affect microbial biomass C and N (MBC, MBN) while tillage reduced only MBN at 10–20 cm compared to NT, likely related to dispersion of N fertilizers throughout the soil. Despite the apparent lack of sensitivity of microbial biomass, changes in SOC and TN illustrate the effects of rotation and tillage on SOM dynamics. The inclusion of crops with high C: N residues and no-till use both support higher C and N content in the top 20 cm of the soil.

Suggested Citation

  • Stacy M. Zuber & Gevan D. Behnke & Emerson D. Nafziger & Maria B. Villamil, 2018. "Carbon and Nitrogen Content of Soil Organic Matter and Microbial Biomass under Long-Term Crop Rotation and Tillage in Illinois, USA," Agriculture, MDPI, vol. 8(3), pages 1-12, March.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:3:p:37-:d:135467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/3/37/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/3/37/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumari, V. Visha & Balloli, S.S. & Ramana, D.B.V. & Kumar, Manoranjan & Maruthi, V. & Prabhakar, M. & Osman, M. & Indoria, A.K. & Manjunath, M. & Chary, G. Ravindra & Gopinath, K.A. & Venkatesh, G. & , 2023. "Crop and livestock productivity, soil health improvement and insect dynamics: Impact of different fodder-based cropping systems in a rainfed region of India," Agricultural Systems, Elsevier, vol. 208(C).
    2. Nataliia Kussul & Klaus Deininger & Leonid Shumilo & Mykola Lavreniuk & Daniel Ayalew Ali & Oleg Nivievskyi, 2022. "Biophysical Impact of Sunflower Crop Rotation on Agricultural Fields," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    3. Somasundaram Jayaraman & Meenakshi Sahu & Nishant K. Sinha & Monoranjan Mohanty & Ranjeet S. Chaudhary & Brijesh Yadav & Lalit K. Srivastava & Kuntal M. Hati & Ashok K. Patra & Ram C. Dalal, 2022. "Conservation Agricultural Practices Impact on Soil Organic Carbon, Soil Aggregation and Greenhouse Gas Emission in a Vertisol," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    4. Yadav, Gulab Singh & Das, Anup & Kandpal, B K & Babu, Subhash & Lal, Rattan & Datta, Mrinmoy & Das, Biswajit & Singh, Raghavendra & Singh, VK & Mohapatra, KP & Chakraborty, Mandakranta, 2021. "The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Kumari, V. Visha & Balloli, S.S. & Kumar, Manoranjan & Ramana, D.B.V. & Prabhakar, M. & Osman, M. & Indoria, A.K. & Manjunath, M. & Maruthi, V. & Chary, G. Ravindra & Chandran, M.A. Sarath & Gopinath,, 2024. "Diversified cropping systems for reducing soil erosion and nutrient loss and for increasing crop productivity and profitability in rainfed environments," Agricultural Systems, Elsevier, vol. 217(C).
    6. Patrick Nyambo & Chiduza Cornelius & Tesfay Araya, 2020. "Carbon Dioxide Fluxes and Carbon Stocks under Conservation Agricultural Practices in South Africa," Agriculture, MDPI, vol. 10(9), pages 1-13, August.

    More about this item

    Keywords

    rotation; no-till; soil biology;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:3:p:37-:d:135467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.