IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v7y2017i7p61-d105589.html
   My bibliography  Save this article

The Role of Small-Scale Biofuel Production in Brazil: Lessons for Developing Countries

Author

Listed:
  • Arielle Muniz Kubota

    (Interdisciplinary Center for Energy Planning (NIPE), University of Campinas, Campinas 13083-896, Brazil)

  • João Guilherme Dal Belo Leite

    (Federal University of the South Frontier (UFFS), Santa Catarina 89802-112, Brazil)

  • Marcos Watanabe

    (Brazilian Bioethanol Science and Technology Laboratory (CTBE)/Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil)

  • Otávio Cavalett

    (Brazilian Bioethanol Science and Technology Laboratory (CTBE)/Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil)

  • Manoel Regis Lima Verde Leal

    (Brazilian Bioethanol Science and Technology Laboratory (CTBE)/Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil)

  • Luis Cortez

    (Interdisciplinary Center for Energy Planning (NIPE), University of Campinas, Campinas 13083-896, Brazil)

Abstract

Small-scale biofuel initiatives to produce sugarcane ethanol are claimed to be a sustainable opportunity for ethanol supply, particularly for regions with price-restricted or no access to modern biofuels, such as communities located far from the large ethanol production centers in Brazil and family-farm communities in Sub-Saharan Africa, respectively. However, smallholders often struggle to achieve economic sustainability with ethanol microdistilleries. The aim of this paper is to provide an assessment of the challenges faced by small-scale bioenergy initiatives and discuss the conditions that would potentially make these initiatives economically feasible. Ethanol microdistilleries were assessed through a critical discussion of existent models and through an economic analysis of different sugarcane ethanol production models. The technical-economic analysis showed that the lack of competitiveness against large-scale ethanol distillery, largely due to both low crop productivity and process efficiency, makes it unlikely that small-scale distilleries can compete in the national/international ethanol market without governmental policies and subsidies. Nevertheless, small-scale projects intended for local supply and integrated food–fuel systems seem to be an interesting alternative that can potentially make ethanol production in small farms viable as well as increase food security and project sustainability particularly for local communities in developing countries.

Suggested Citation

  • Arielle Muniz Kubota & João Guilherme Dal Belo Leite & Marcos Watanabe & Otávio Cavalett & Manoel Regis Lima Verde Leal & Luis Cortez, 2017. "The Role of Small-Scale Biofuel Production in Brazil: Lessons for Developing Countries," Agriculture, MDPI, vol. 7(7), pages 1-12, July.
  • Handle: RePEc:gam:jagris:v:7:y:2017:i:7:p:61-:d:105589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/7/7/61/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/7/7/61/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    2. Gasparatos, A. & von Maltitz, G.P. & Johnson, F.X. & Lee, L. & Mathai, M. & Puppim de Oliveira, J.A. & Willis, K.J., 2015. "Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 879-901.
    3. Han, Jingyi & Mol, Arthur P.J. & Lu, Yonglong & Zhang, Lei, 2008. "Small-scale bioenergy projects in rural China: Lessons to be learnt," Energy Policy, Elsevier, vol. 36(6), pages 2154-2162, June.
    4. Mayer, Flávio Dias & Feris, Liliana Amaral & Marcilio, Nilson Romeu & Hoffmann, Ronaldo, 2015. "Why small-scale fuel ethanol production in Brazil does not take off?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 687-701.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauro Lizot & Flavio Trojan & Paulo Afonso, 2021. "Combining Total Cost of Ownership and Multi-Criteria Decision Analysis to Improve Cost Management in Family Farming," Agriculture, MDPI, vol. 11(2), pages 1-20, February.
    2. Aicha Ait Sair & Kamal Kansou & Franck Michaud & Bernard Cathala, 2021. "Multicriteria Definition of Small-Scale Biorefineries Based on a Statistical Classification," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    3. Sileshi Degefa & Osamu Saito, 2017. "Assessing the Impacts of Large-Scale Agro-Industrial Sugarcane Production on Biodiversity: A Case Study of Wonji Shoa Sugar Estate, Ethiopia," Agriculture, MDPI, vol. 7(12), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Abubakari & Kuusaana, Elias Danyi & Gasparatos, Alexandros, 2018. "The role of chiefs in large-scale land acquisitions for jatropha production in Ghana: insights from agrarian political economy," Land Use Policy, Elsevier, vol. 75(C), pages 570-582.
    2. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    3. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    4. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    5. Maurizio Passaponti & Leonardo Lari & Marco Bonechi & Francesca Bruni & Walter Giurlani & Gabriele Sciortino & Luca Rosi & Lorenzo Fabbri & Martina Vizza & Vlado K. Lazarov & Claudio Fontanesi & Massi, 2020. "Optimisation Study of Co Deposition on Chars from MAP of Waste Tyres as Green Electrodes in ORR for Alkaline Fuel Cells," Energies, MDPI, vol. 13(21), pages 1-13, October.
    6. Liu, Wenling & Wang, Can & Mol, Arthur P.J., 2013. "Rural public acceptance of renewable energy deployment: The case of Shandong in China," Applied Energy, Elsevier, vol. 102(C), pages 1187-1196.
    7. Terrapon-Pfaff, Julia & Dienst, Carmen & König, Julian & Ortiz, Willington, 2014. "A cross-sectional review: Impacts and sustainability of small-scale renewable energy projects in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1-10.
    8. Yin, Dongxue & Liu, Wei & Zhai, Ningning & Wang, Yandong & Ren, Chengjie & Yang, Gaihe, 2017. "Regional differentiation of rural household biogas development and related driving factors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1008-1018.
    9. Jha, Priyanka & Schmidt, Stefan, 2021. "State of biofuel development in sub-Saharan Africa: How far sustainable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    11. Ahmed, Abubakari & Gasparatos, Alexandros, 2020. "Multi-dimensional energy poverty patterns around industrial crop projects in Ghana: Enhancing the energy poverty alleviation potential of rural development strategies," Energy Policy, Elsevier, vol. 137(C).
    12. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    13. Zhang, Kai & Chang, Jian & Guan, Yanjun & Chen, Honggang & Yang, Yongping & Jiang, Jianchun, 2013. "Lignocellulosic biomass gasification technology in China," Renewable Energy, Elsevier, vol. 49(C), pages 175-184.
    14. Qu, Mei & Lin, Ying & Liu, Can & Yao, Shunbo & Cao, Yang, 2016. "Farmers׳ perceptions of developing forest based bioenergy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 581-589.
    15. Sánchez, A.S. & Almeida, M.B. & Torres, E.A. & Kalid, R.A. & Cohim, E. & Gasparatos, A., 2018. "Alternative biodiesel feedstock systems in the Semi-arid region of Brazil: Implications for ecosystem services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2744-2758.
    16. Jingwen Wu & Bingdong Hou & Ruo-Yu Ke & Yun-Fei Du & Ce Wang & Xiangzheng Li & Jiawei Cai & Tianqi Chen & Meixuan Teng & Jin Liu & Jin-Wei Wang & Hua Liao, 2017. "Residential Fuel Choice in Rural Areas: Field Research of Two Counties of North China," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    17. Boubacar Siddighi Balde & Mamady Diawara & Cristiano M. Rossignoli & Alexandros Gasparatos, 2019. "Smallholder-Based Oil Palm and Rubber Production in the Forest Region of Guinea: An Exploratory Analysis of Household Food Security Outcomes," Agriculture, MDPI, vol. 9(2), pages 1-19, February.
    18. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    19. Moseki, Ofentse & Murray-Hudson, Michael & Kashe, Keotshephile, 2019. "Crop water and irrigation requirements of Jatropha curcas L. in semi-arid conditions of Botswana: applying the CROPWAT model," Agricultural Water Management, Elsevier, vol. 225(C).
    20. Chen, Lihong & Li, Xiaobing & Wen, Wanyu & Jia, Jingdun & Li, Guoqing & Deng, Fei, 2012. "The status, predicament and countermeasures of biomass secondary energy production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6212-6219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:7:y:2017:i:7:p:61-:d:105589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.