IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v7y2017i10p79-d112620.html
   My bibliography  Save this article

Energy and Carbon Impact of Precision Livestock Farming Technologies Implementation in the Milk Chain: From Dairy Farm to Cheese Factory

Author

Listed:
  • Giuseppe Todde

    (Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy)

  • Maria Caria

    (Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy)

  • Filippo Gambella

    (Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy)

  • Antonio Pazzona

    (Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy)

Abstract

Precision Livestock Farming (PLF) is being developed in livestock farms to relieve the human workload and to help farmers to optimize production and management procedure. The objectives of this study were to evaluate the consequences in energy intensity and the related carbon impact, from dairy farm to cheese factory, due to the implementation of a real-time milk analysis and separation (AfiMilk MCS) in milking parlors. The research carried out involved three conventional dairy farms, the collection and delivery of milk from dairy farms to cheese factory and the processing line of a traditional soft cheese into a dairy factory. The AfiMilk MCS system installed in the milking parlors allowed to obtain a large number of information related to the quantity and quality of milk from each individual cow and to separate milk with two different composition (one with high coagulation properties and the other one with low coagulation properties), with different percentage of separation. Due to the presence of an additional milkline and the AfiMilk MCS components, the energy requirements and the related environmental impact at farm level were slightly higher, among 1.1% and 4.4%. The logistic of milk collection was also significantly reorganized in view of the collection of two separate type of milk, hence, it leads an increment of 44% of the energy requirements. The logistic of milk collection and delivery represents the process which the highest incidence in energy consumption occurred after the installation of the PLF technology. Thanks to the availability of milk with high coagulation properties, the dairy plant, produced traditional soft cheese avoiding the standardization of the formula, as a result, the energy uses decreased about 44%, while considering the whole chain, the emissions of carbon dioxide was reduced by 69%. In this study, the application of advance technologies in milking parlors modified not only the on-farm management but mainly the procedure carried out in cheese making plant. This aspect makes precision livestock farming implementation unimportant technology that may provide important benefits throughout the overall milk chain, avoiding about 2.65 MJ of primary energy every 100 kg of processed milk.

Suggested Citation

  • Giuseppe Todde & Maria Caria & Filippo Gambella & Antonio Pazzona, 2017. "Energy and Carbon Impact of Precision Livestock Farming Technologies Implementation in the Milk Chain: From Dairy Farm to Cheese Factory," Agriculture, MDPI, vol. 7(10), pages 1-11, September.
  • Handle: RePEc:gam:jagris:v:7:y:2017:i:10:p:79-:d:112620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/7/10/79/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/7/10/79/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pagani, Marco & Vittuari, Matteo & Johnson, Thomas G. & De Menna, Fabio, 2016. "An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna," Agricultural Systems, Elsevier, vol. 145(C), pages 116-126.
    2. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rares Halbac-Cotoara-Zamfir & Andrea Colantoni & Enrico Maria Mosconi & Stefano Poponi & Simona Fortunati & Luca Salvati & Filippo Gambella, 2020. "From Historical Narratives to Circular Economy: De-Complexifying the “Desertification” Debate," IJERPH, MDPI, vol. 17(15), pages 1-18, July.
    2. Ronaghi, Marzieh & Ronaghi, Mohammad Hossein, 2021. "Investigating the impact of economic, political, and social factors on augmented reality technology acceptance in agriculture (livestock farming) sector in a developing country," Technology in Society, Elsevier, vol. 67(C).
    3. Xiaowen Dai & Xin Wu & Yi Chen & Yanqiu He & Fang Wang & Yuying Liu, 2022. "Real Drivers and Spatial Characteristics of CO 2 Emissions from Animal Husbandry: A Regional Empirical Study of China," Agriculture, MDPI, vol. 12(4), pages 1-18, April.
    4. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-14, February.
    5. Radka Redlichová & Gabriela Chmelíková & Ivana Blažková & Eliška Svobodová & Inez Naaki Vanderpuje, 2021. "Organic Food Needs More Land and Direct Energy to Be Produced Compared to Food from Conventional Farming: Empirical Evidence from the Czech Republic," Agriculture, MDPI, vol. 11(9), pages 1-19, August.
    6. Witold Jan Wardal & Kamila Ewelina Mazur & Kamil Roman & Michał Roman & Marcin Majchrzak, 2021. "Assessment of Cumulative Energy Needs for Chosen Technologies of Cattle Feeding in Barns with Conventional (CFS) and Automated Feeding Systems (AFS)," Energies, MDPI, vol. 14(24), pages 1-15, December.
    7. Maria Caria & Giuseppe Todde & Antonio Pazzona, 2018. "Modelling the Collection and Delivery of Sheep Milk: A Tool to Optimise the Logistics Costs of Cheese Factories," Agriculture, MDPI, vol. 8(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-14, February.
    2. David Pérez-Neira & Marta Soler-Montiel & Rosario Gutiérrez-Peña & Yolanda Mena-Guerrero, 2018. "Energy Assessment of Pastoral Dairy Goat Husbandry from an Agroecological Economics Perspective. A Case Study in Andalusia (Spain)," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    3. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-13, February.
    4. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    5. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    6. Erika Carnevale & Giovanni Molari & Matteo Vittuari, 2017. "Used Cooking Oils in the Biogas Chain: A Technical and Economic Assessment," Energies, MDPI, vol. 10(2), pages 1-13, February.
    7. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    8. Houston, Carrie & Gyamfi, Samuel & Whale, Jonathan, 2014. "Evaluation of energy efficiency and renewable energy generation opportunities for small scale dairy farms: A case study in Prince Edward Island, Canada," Renewable Energy, Elsevier, vol. 67(C), pages 20-29.
    9. Matteo Vittuari & Fabio De Menna & Marco Pagani, 2016. "The Hidden Burden of Food Waste: The Double Energy Waste in Italy," Energies, MDPI, vol. 9(8), pages 1-24, August.
    10. Oğuz, Cennet & Yener, Aysun, 2019. "The use of energy in milk production; a case study from Konya province of Turkey," Energy, Elsevier, vol. 183(C), pages 142-148.
    11. Pagani, Marco & Vittuari, Matteo & Johnson, Thomas G. & De Menna, Fabio, 2016. "An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna," Agricultural Systems, Elsevier, vol. 145(C), pages 116-126.
    12. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    13. Pérez-Neira, David & Schneider, Monika & Armengot, Laura, 2020. "Crop-diversification and organic management increase the energy efficiency of cacao plantations," Agricultural Systems, Elsevier, vol. 177(C).
    14. Xinyi Du & Qi Wang & Yingying Zheng & Jinming Gui & Songhuai Du & Zhengxiang Shi, 2023. "Sustainable Planning Strategy of Dairy Farming in China Based on Carbon Emission from Direct Energy Consumption," Agriculture, MDPI, vol. 13(5), pages 1-15, April.
    15. Martinho, V.J.P.D., 2020. "Relationships between agricultural energy and farming indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:7:y:2017:i:10:p:79-:d:112620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.