IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i2p146-d1564670.html
   My bibliography  Save this article

Winter and Season-Only Irrigation with Late Summer Irrigation Termination Influences Alfalfa Dry Matter Yield and Applied Water Use Efficiency

Author

Listed:
  • Leonard M. Lauriault

    (Rex E. Agricultural Science Center, New Mexico State University, Tucumcari, NM 88401, USA)

  • Murali K. Darapuneni

    (Rex E. Agricultural Science Center, New Mexico State University, Tucumcari, NM 88401, USA)

  • Koffi Djaman

    (Agricultural Science Center, New Mexico State University, Farmington, NM 87401, USA)

  • Mark A. Marsalis

    (Agricultural Science Center, New Mexico State University, Los Lunas, NM 87031, USA)

Abstract

Increasing water scarcity for agricultural irrigation demands options to maximize yield with available water. Alfalfa ( Medicago sativa ) is a valuable crop in arid and semiarid regions and is considered a major user of irrigation water. Consequently, an area of established alfalfa was center-pivot-irrigated over two years according to one of four irrigation regimes, each with three replicates as strip plots. These were started after the last of the six harvests of the year, after seeding: winter-irrigated and throughout the growing season (winter full), winter-irrigated and terminated after the 4th harvest (winter limited), irrigated from mid-April, when canal water typically becomes available, and throughout the remainder of the growing season (season full), or typically-irrigated until the 4th harvest (season limited). Annual dry matter yield (DMY) was increased using winter irrigation compared to season-only irrigation (10.34, 8.94, 8.67, and 6.54 Mg ha −1 for winter full, winter limited, season full, and season limited, respectively, p < 0.0001, SEM 0.45). Irrigation termination after the fourth harvest with no winter irrigation significantly reduced annual applied water use efficiency (AAWUE) compared to all other treatments (9.08, 8.59, 8.82, and 7.38 kg DMY ha −1 mm −1 for winter full, winter limited, season full, and season limited, respectively; p < 0.0098, SEM = 0.38). Winter irrigation to fill the soil profile, followed by late summer irrigation termination, is feasible for increasing alfalfa productivity over season-only irrigation.

Suggested Citation

  • Leonard M. Lauriault & Murali K. Darapuneni & Koffi Djaman & Mark A. Marsalis, 2025. "Winter and Season-Only Irrigation with Late Summer Irrigation Termination Influences Alfalfa Dry Matter Yield and Applied Water Use Efficiency," Agriculture, MDPI, vol. 15(2), pages 1-14, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:2:p:146-:d:1564670
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/2/146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/2/146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Minguo & Wang, Zikui & Mu, Le & Xu, Rui & Yang, Huimin, 2021. "Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China," Agricultural Water Management, Elsevier, vol. 248(C).
    2. Wu, Wanping & Liu, Minguo & Wu, Xiaojuan & Wang, Zikui & Yang, Huimin, 2022. "Effects of deficit irrigation on nitrogen uptake and soil mineral nitrogen in alfalfa grasslands of the inland arid area of China," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Cavero, Jose & Faci, Jose M. & Martínez-Cob, Antonio, 2016. "Relevance of sprinkler irrigation time of the day on alfalfa forage production," Agricultural Water Management, Elsevier, vol. 178(C), pages 304-313.
    4. Li, Maona & Zhang, Yunlong & Ma, Chizhen & Sun, Hongren & Ren, Wei & Wang, Xianguo, 2023. "Maximizing the water productivity and economic returns of alfalfa by deficit irrigation in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Ben Ali, Akram R. & Shukla, Manoj K. & Marsalis, Mark & Khan, Nyle, 2022. "Irrigation with desalinated and raw produced waters: Effects on soil properties, and germination and growth of five forages," Agricultural Water Management, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Liu, Minguo & Wu, Xiaojuan & Yang, Huimin, 2022. "Evapotranspiration characteristics and soil water balance of alfalfa grasslands under regulated deficit irrigation in the inland arid area of Midwestern China," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Coelho, Eugênio Ferreira & Lima, Lenilson Wisner Ferreira & Stringam, Blair & de Matos, Aristoteles Pires & Santos, Dionei Lima & Reinhardt, Domingo Haroldo & de Melo Velame, Lucas & dos Santos, Carlo, 2024. "Water productivity in pineapple (Ananas comosus) cultivation using plastic film to reduce evaporation and percolation," Agricultural Water Management, Elsevier, vol. 296(C).
    4. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    5. Kamran, Muhammad & Yan, Zhengang & Chang, Shenghua & Ning, Jiao & Lou, Shanning & Ahmad, Irshad & Ghani, Muhammad Usman & Arif, Muhammad & El Sabagh, Ayman & Hou, Fujiang, 2023. "Interactive effects of reduced irrigation and nitrogen fertilization on resource use efficiency, forage nutritive quality, yield, and economic benefits of spring wheat in the arid region of Northwest ," Agricultural Water Management, Elsevier, vol. 275(C).
    6. Li, Maona & Zhang, Yunlong & Ma, Chizhen & Sun, Hongren & Ren, Wei & Wang, Xianguo, 2023. "Maximizing the water productivity and economic returns of alfalfa by deficit irrigation in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Yan Li & Derong Su, 2017. "Alfalfa Water Use and Yield under Different Sprinkler Irrigation Regimes in North Arid Regions of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    9. Wu, Wanping & Liu, Minguo & Wu, Xiaojuan & Wang, Zikui & Yang, Huimin, 2022. "Effects of deficit irrigation on nitrogen uptake and soil mineral nitrogen in alfalfa grasslands of the inland arid area of China," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Monika Marković & Maja Matoša Kočar & Željko Barač & Alka Turalija & Atılgan Atılgan & Danijel Jug & Marija Ravlić, 2024. "Field Performance Evaluation of Low-Cost Soil Moisture Sensors in Irrigated Orchard," Agriculture, MDPI, vol. 14(8), pages 1-19, July.
    11. Serra-Wittling, Claire & Molle, Bruno & Cheviron, Bruno, 2019. "Plot level assessment of irrigation water savings due to the shift from sprinkler to localized irrigation systems or to the use of soil hydric status probes. Application in the French context," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    12. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    13. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    14. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    15. Minhua, Yin & Yanlin, Ma & Yanxia, Kang & Qiong, Jia & Guangping, Qi & Jinghai, Wang & Changkun, Yang & Jianxiong, Yu, 2022. "Optimized farmland mulching improves alfalfa yield and water use efficiency based on meta-analysis and regression analysis," Agricultural Water Management, Elsevier, vol. 267(C).
    16. Zhang, Haowen & Liang, Qing & Peng, Zhengping & Zhao, Yi & Tan, Yuechen & Zhang, Xin & Bol, Roland, 2023. "Response of greenhouse gases emissions and yields to irrigation and straw practices in wheat-maize cropping system," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Tong, Xuanyue & Wu, Pute & Liu, Xufei & Zhang, Lin & Zhou, Wei & Wang, Zhaoguo, 2022. "A global meta-analysis of fruit tree yield and water use efficiency under deficit irrigation," Agricultural Water Management, Elsevier, vol. 260(C).
    18. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Jinlong Chai & Hang Yang & Zhen Chen & Weifang Li & Dongqing Li & Xiaojun Yu, 2025. "Biochar and Nitrogen Fertilizer Promote Alfalfa Yield by Regulating Root Development, Osmoregulatory Substances and Improve Soil Physicochemical Properties," Agriculture, MDPI, vol. 15(3), pages 1-19, January.
    20. Mohammad Ismaeil Kamali & Hossein Ansari & Rouzbeh Nazari, 2022. "Optimization of Applied Water Depth Under Water Limiting Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4081-4098, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:2:p:146-:d:1564670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.