IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i9p1492-d1469143.html
   My bibliography  Save this article

Evaluation of the Effectiveness of a Humic Substances-Based Product for Lettuce Growth and Nitrogen Use Efficiency under Low Nitrogen Conditions

Author

Listed:
  • Santiago Atero-Calvo

    (Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain)

  • Francesco Magro

    (Sofbey S.A., Via San Martino 16/A, CH-6850 Mendrisio, Switzerland)

  • Giacomo Masetti

    (Sofbey S.A., Via San Martino 16/A, CH-6850 Mendrisio, Switzerland)

  • Eloy Navarro-León

    (Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain)

  • Juan Jose Rios

    (Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain)

  • Juan Manuel Ruiz

    (Department of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain)

Abstract

Increasing crop yield with low-N supplies has become one of the main aims of current agriculture to reduce the excessive use of chemical fertilizers. A sustainable strategy to improve crop productivity, N assimilation, and N Use Efficiency (NUE) under limit-N growth conditions is the application of biostimulants, such as humic substances (HS). Here, we evaluated the effectiveness of an HS-based biostimulant, BLACKJAK ® , in improving lettuce growth and NUE under N-deficit conditions. Thus, BLACKJAK ® was applied radicularly (R) and foliarly (F) at the following doses: R-HS 0.40 mL/L, R-HS 0.60 mL/L, F-HS 7.50 mL/L, and F-HS 10.00 mL/L. Three N levels were applied: optimal (7 mM) and N-deficit (3 mM and 1 mM). The results showed that shoot dry weight (DW) was reduced at 3 mM N (−32%) and 1 mM N (−42%). However, R and F BLACKJAK ® enhanced plant growth at all three N levels, especially with F-HS at 10.00 mL/L, which showed an increase of 43% in shoot DW at 3 and 1 mM N, compared to plants not treated with HS. BLAKCJAK ® also improved photosynthesis, NO 3 − and organic N accumulation, the activity of N assimilation enzymes, and the concentration of amino acids and proteins, regardless of the N level. In addition, HS enhanced NUE parameters under all N conditions, except for R-HS 0.60 mL/L at 1 mM N. Hence, our study suggests that the HS-based product BLACKJAK ® could be a good candidate for reducing chemical fertilizer use and improving lettuce growth and NUE under low N conditions, although further research is required.

Suggested Citation

  • Santiago Atero-Calvo & Francesco Magro & Giacomo Masetti & Eloy Navarro-León & Juan Jose Rios & Juan Manuel Ruiz, 2024. "Evaluation of the Effectiveness of a Humic Substances-Based Product for Lettuce Growth and Nitrogen Use Efficiency under Low Nitrogen Conditions," Agriculture, MDPI, vol. 14(9), pages 1-17, September.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1492-:d:1469143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/9/1492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/9/1492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rose Daphnee Tchonkouang & Helen Onyeaka & Taghi Miri, 2023. "From Waste to Plate: Exploring the Impact of Food Waste Valorisation on Achieving Zero Hunger," Sustainability, MDPI, vol. 15(13), pages 1-21, July.
    2. Norhan M. M. El-Syed & Ayman M. Helmy & Sara E. E. Fouda & Mohamed M. Nabil & Tamer A. Abdullah & Sadeq K. Alhag & Laila A. Al-Shuraym & Khalid M. Al Syaad & Anam Ayyoub & Mohsin Mahmood & Ahmed S. El, 2023. "Biochar with Organic and Inorganic Fertilizers Improves Defenses, Nitrogen Use Efficiency, and Yield of Maize Plants Subjected to Water Deficit in an Alkaline Soil," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
    3. Sun, Xutong & Lv, Aimin & Chen, Dandan & Zhang, Zili & Wang, Xuming & Zhou, Aicun & Xu, Xiaowei & Shao, Qingsong & Zheng, Ying, 2023. "Exogenous spermidine enhanced the water deficit tolerance of Anoectochilus roxburghii by modulating plant antioxidant enzymes and polyamine metabolism," Agricultural Water Management, Elsevier, vol. 289(C).
    4. Guo, Yuling & Huang, Guanmin & Wei, Zexin & Feng, Tianyu & Zhang, Kun & Zhang, Mingcai & Li, Zhaohu & Zhou, Yuyi & Duan, Liusheng, 2023. "Exogenous application of coronatine and alginate oligosaccharide to maize seedlings enhanced drought tolerance at seedling and reproductive stages," Agricultural Water Management, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1492-:d:1469143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.