IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1424-d1461438.html
   My bibliography  Save this article

Impact of Fertilization and Seasonal Changes on Paddy Soil: Unveiling the Interplay between Agricultural Practices, Enzyme Activity, and Gene Diversity

Author

Listed:
  • Yu-Pei Chen

    (School of Public Health, Fujian Medical University, Fuzhou 350122, China
    Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China)

  • Hsi-Yuan Huang

    (Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China)

  • Chia-Fang Tsai

    (Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan)

  • Chiu-Chung Young

    (Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan
    Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan)

Abstract

Climate change and soil acidification are critical factors affecting crop production and soil quality. This study comprehensively analyzed the impact of fertilization practices, including conventional (CA), sustainable (SA), and unfertilized (BK), on soil properties, enzyme activities, and gene diversity in paddy fields across seasonal changes. Soil pH was significantly influenced by fertilization, with higher pH in BK and a decrease in pH with increased fertilization. Soil enzyme activities and Biolog EcoPlate™ analysis revealed the lowest activities in September, with the highest in December under different practices. Metagenomic analysis showed the highest genetic richness in CA soil, with seasonal variations influencing genetic diversity. From the perspective of genes in species taxonomy, Sorangium cellulosum and Anaeromyxobacter sp. were the most abundant taxa. Soil genes annotated by CAZy, COG, and GO databases revealed highly similar gene structures among different practices. Moreover, the genetic origins of soil enzymes were linked to specific bacterial contributors. While not all gene’s diversity and abundance were associated with soil enzyme activity, arylsulfatase showed an obvious correlation. Enzyme activities proved more sensitive indicators of microbial activity than gene abundance. This study emphasizes the need for rational fertilization strategies to maintain soil enzyme activities, considering agricultural practices and seasonal variations.

Suggested Citation

  • Yu-Pei Chen & Hsi-Yuan Huang & Chia-Fang Tsai & Chiu-Chung Young, 2024. "Impact of Fertilization and Seasonal Changes on Paddy Soil: Unveiling the Interplay between Agricultural Practices, Enzyme Activity, and Gene Diversity," Agriculture, MDPI, vol. 14(8), pages 1-24, August.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1424-:d:1461438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    2. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    3. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Jean Giblette, 2022. "Growing Chinese Medicinal Herbs to Prevent and Treat Chronic Illness," American Journal of Economics and Sociology, Wiley Blackwell, vol. 81(4), pages 753-769, September.
    5. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Yu, Meng & Chen, Pengpeng & Li, Yupeng & Liu, Fulai, 2022. "Optimizing the impact of film mulching pattern and nitrogen application rate on maize production, gaseous N emissions, and utilization of water and nitrogen in northwest China," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Dariusz Jaskulski & Iwona Jaskulska & Emilian Różniak & Maja Radziemska & Martin Brtnický, 2023. "Cultivation of Crops in Strip-Till Technology and Microgranulated Fertilisers Containing a Gelling Agent as a Farming Response to Climate Change," Agriculture, MDPI, vol. 13(10), pages 1-21, October.
    7. Sehrish Munawar Cheema & Muhammad Ali & Ivan Miguel Pires & Norberto Jorge Gonçalves & Mustahsan Hammad Naqvi & Maleeha Hassan, 2022. "IoAT Enabled Smart Farming: Urdu Language-Based Solution for Low-Literate Farmers," Agriculture, MDPI, vol. 12(8), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1424-:d:1461438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.