IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1418-d1460651.html
   My bibliography  Save this article

Drought Stress in Quinoa: Effects, Responsive Mechanisms, and Management through Biochar Amended Soil: A Review

Author

Listed:
  • Muhammad Zubair Akram

    (Ph.D. Program in Agricultural, Forest and Food Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
    School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy)

  • Angela Libutti

    (Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122 Foggia, Italy)

  • Anna Rita Rivelli

    (School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy)

Abstract

Chenopodium quinoa Willd. (quinoa), a highly nutritious pseudocereal, is a promising crop to address global food insecurity challenges intensified by population growth and climate change. However, drought stress remains a significant constraint for quinoa cultivation. The plant exhibits several morphophysiological adaptations to water stress conditions, including root system modifications, reduced growth rate, leaf abscission, and stomatal closure. While these adaptations enhance drought tolerance, they can also negatively impact plant growth, potentially through alterations in root architecture, physiological changes, e.g., stomatal regulations, and anatomical changes. Different studies have suggested that soil amendment with biochar, a pyrolyzed organic material, can improve quinoa growth and productivity under drought stress conditions. Biochar application to the soil significantly enhances soil physiochemical characteristics and maintains plant water status, thereby promoting plant growth and potentially mitigating the negative consequences of drought on quinoa production. This review focuses on the current understanding of quinoa behavior under drought stress and the potential of soil amendment with biochar as a management strategy. We summarize existing research on applying biochar-amended soil to alleviate quinoa drought stress.

Suggested Citation

  • Muhammad Zubair Akram & Angela Libutti & Anna Rita Rivelli, 2024. "Drought Stress in Quinoa: Effects, Responsive Mechanisms, and Management through Biochar Amended Soil: A Review," Agriculture, MDPI, vol. 14(8), pages 1-25, August.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1418-:d:1460651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasileios Tsolis & Pantelis Barouchas, 2023. "Biochar as Soil Amendment: The Effect of Biochar on Soil Properties Using VIS-NIR Diffuse Reflectance Spectroscopy, Biochar Aging and Soil Microbiology—A Review," Land, MDPI, vol. 12(8), pages 1-41, August.
    2. Nawal Taaime & Khalil El Mejahed & Mariam Moussafir & Rachid Bouabid & Abdallah Oukarroum & Redouane Choukr-Allah & Mohamed El Gharous, 2022. "Early Sowing of Quinoa Cultivars, Benefits from Rainy Season and Enhances Quinoa Development, Growth, and Yield under Arid Condition in Morocco," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    3. Muhammad Saqlain Zaheer & Hafiz Haider Ali & Walid Soufan & Rashid Iqbal & Muhammad Habib-ur-Rahman & Javaid Iqbal & Muhammad Israr & Ayman El Sabagh, 2021. "Potential Effects of Biochar Application for Improving Wheat ( Triticum aestivum L.) Growth and Soil Biochemical Properties under Drought Stress Conditions," Land, MDPI, vol. 10(11), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodora Bousdra & Sotiria G. Papadimou & Evangelia E. Golia, 2023. "The Use of biochar in the Remediation of Pb , Cd , and Cu -Contaminated Soils. The Impact of biochar Feedstock and Preparation Conditions on Its Remediation Capacity," Land, MDPI, vol. 12(2), pages 1-20, January.
    2. Ruben Budău & Andrei Apăfăian & Mihail Caradaică & Iulian A. Bratu & Claudia S. C. Timofte & Cristian M. Enescu, 2023. "Expert-Based Assessment of the Potential of Agroforestry Systems in Plain Regions across Bihor County, Western Romania," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    3. Sajjad Nasiri & Babak Andalibi & Afshin Tavakoli & Mohammad Amir Delavar & Ali El-Keblawy & Lukas Van Zwieten & Andrea Mastinu, 2023. "The Mineral Biochar Alters the Biochemical and Microbial Properties of the Soil and the Grain Yield of Hordeum vulgare L. under Drought Stress," Land, MDPI, vol. 12(3), pages 1-15, February.
    4. M Barka Outbakat & Khalil El Mejahed & Mohamed El Gharous & Kamal El Omari & Adnane Beniaich, 2022. "Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    5. Muhammad Kashif Ejaz & Muhammad Aurangzaib & Rashid Iqbal & Muhammad Shahzaman & Muhammad Habib-ur-Rahman & Mohamed El-Sharnouby & Rahul Datta & Fahad M. Alzuaibr & Mohamed I. Sakran & Chukwuma C. Ogb, 2022. "The Use of Soil Conditioners to Ensure a Sustainable Wheat Yield under Water Deficit Conditions by Enhancing the Physiological and Antioxidant Potentials," Land, MDPI, vol. 11(3), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1418-:d:1460651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.