IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1415-d1460523.html
   My bibliography  Save this article

Spatial–Temporal Analysis of Impacts of Climate Variability on Maize Yield in Kenya

Author

Listed:
  • Renish Awuor Ondiek

    (Pan African University Institute for Water and Energy Sciences Including Climate Change (PAUWES), University of Tlemcen, B.P. 119, Tlemcen 13000, Algeria)

  • Mohamed Saber

    (Disaster Prevention Research Institute, Kyoto University, Goka-sho, Uji City 611-0011, Japan)

  • Mohammed Abdel-Fattah

    (Civil Engineering and Quantity Surveying Department, Military Technological College, P.O. Box 262, Muscat 111, Oman)

Abstract

This study examined the spatial temporal impacts of climate variability on maize yield in Kenya. The maize yield data were obtained from the Kenya Maize Yield Database while climatic variable data were obtained from the Climatic Research Unit gridded Time Series (CRU TS) with a spatial resolution of 0.5° × 0.5°. The non-parametric Mann–Kendall and Sen’s slope tests showed no trend in the data for maximum temperature, minimum temperature and precipitation. The spatial maps patterns highlight the rampancy of wetter areas in the Lake Victoria basin and Highlands East of Rift Valley compared to other regions. Additionally, there is a decreasing trend in the spatial distribution of precipitation in wetter areas and an increasing trend in maximum temperature in dry areas, albeit not statistically significant. Spearman’s rank correlation test showed a strong positive correlation between maize yield and the climatic parameters for the Lake Victoria basin, Highlands East of Rift Valley, Coastal Strip and North Western Regions. The findings suggest that climate variability has a significant impact on maize yield for four out of six climatological zones. We recommend adoption of policies and frameworks that will augment adaptive capacity and build resilience to climatic changes.

Suggested Citation

  • Renish Awuor Ondiek & Mohamed Saber & Mohammed Abdel-Fattah, 2024. "Spatial–Temporal Analysis of Impacts of Climate Variability on Maize Yield in Kenya," Agriculture, MDPI, vol. 14(8), pages 1-20, August.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1415-:d:1460523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1415/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1415/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Kipkemboi Kogo & Lalit Kumar & Richard Koech & Md Kamrul Hasan, 2022. "Response to climate change in a rain-fed crop production system: insights from maize farmers of western Kenya," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-17, December.
    2. Ochieng, Justus & Kirimi, Lilian & Mathenge, Mary, 2016. "Effects of Climate Variability and Change on Agricultural Production: The Case of Small-Scale Farmers in Kenya," Working Papers 229711, Egerton University, Tegemeo Institute of Agricultural Policy and Development.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    2. Olakojo, Solomon Abayomi & Onanuga, Olaronke Toyin, 2020. "Effects of Climate Change on the Long-run Crops’ Yields in Nigeria," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 11(03), September.
    3. Justus Ochieng & Lilian Kirimi & Joyce Makau, 2017. "Adapting to climate variability and change in rural Kenya: farmer perceptions, strategies and climate trends," Natural Resources Forum, Blackwell Publishing, vol. 41(4), pages 195-208, November.
    4. Kristina Lindvall & John Kinsman & Atakelti Abraha & Abdirisak Dalmar & Mohamed Farah Abdullahi & Hagos Godefay & Lelekoitien Lerenten Thomas & Mohamed Osman Mohamoud & Bile Khalif Mohamud & Jairus Mu, 2020. "Health Status and Health Care Needs of Drought-Related Migrants in the Horn of Africa—A Qualitative Investigation," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    5. Khalifa, Sherin & Henning, Christian H. C. A., 2020. "Climate change and civil conflict in SSA and MENA: The same phenomena, but different mechanisms?," Working Papers of Agricultural Policy WP2020-03, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    6. Francisco Francisco & Jennifer Leijon & Cecilia Boström & Jens Engström & Jan Sundberg, 2018. "Wave Power as Solution for Off-Grid Water Desalination Systems: Resource Characterization for Kilifi-Kenya," Energies, MDPI, vol. 11(4), pages 1-14, April.
    7. Bozzola, Martina & Smale, Melinda, 2020. "The welfare effects of crop biodiversity as an adaptation to climate shocks in Kenya," World Development, Elsevier, vol. 135(C).
    8. Jean-Luc Mubenga-Tshitaka & Johane Dikgang & John W. Muteba Mwamba & Dambala Gelo, 2023. "Climate variability impacts on agricultural output in East Africa," Cogent Economics & Finance, Taylor & Francis Journals, vol. 11(1), pages 2181281-218, December.
    9. Chenchen Ding & Yong Xia & Yang Su & Feng Li & Changjiang Xiong & Jingwen Xu, 2022. "Study on the Impact of Climate Change on China’s Import Trade of Major Agricultural Products and Adaptation Strategies," IJERPH, MDPI, vol. 19(21), pages 1-21, November.
    10. Espoir M. Bagula & Jackson Gilbert M. Majaliwa & Gustave N. Mushagalusa & Twaha A. Basamba & John-Baptist Tumuhairwe & Jean-Gomez M. Mondo & Patrick Musinguzi & Cephas B. Mwimangire & Géant B. Chuma &, 2022. "Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo," Land, MDPI, vol. 11(9), pages 1-22, August.
    11. Bannor, Frank & Dikgang, Johane & Kutela Gelo, Dambala, 2021. "Interdependence between research and development, climate variability and agricultural production: evidence from sub-Saharan Africa," MPRA Paper 105697, University Library of Munich, Germany.
    12. Martina Bozzola & Melinda Smale & Salvatore Di Falco, 2016. "Climate, Shocks, Weather and Maize Intensification Decisions in Rural Kenya," FOODSECURE Working papers 39, LEI Wageningen UR.
    13. Francisco Javier Fernández-Alonso & Zulimar Hernández & Vicente Torres-Costa, 2023. "A Cost-Effective Portable Multiband Spectrophotometer for Precision Agriculture," Agriculture, MDPI, vol. 13(8), pages 1-18, July.
    14. Andrew M. Linke & Frank D. W. Witmer & John O’Loughlin, 2020. "Do people accurately report droughts? Comparison of instrument-measured and national survey data in Kenya," Climatic Change, Springer, vol. 162(3), pages 1143-1160, October.
    15. Alejandro Cleves & Eva Youkhana & Javier Toro, 2022. "A Method to Assess Agroecosystem Resilience to Climate Variability," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    16. Justus Ochieng & Lilian Kirimi & Dennis O. Ochieng & Timothy Njagi & Mary Mathenge & Raphael Gitau & Miltone Ayieko, 2020. "Managing climate risk through crop diversification in rural Kenya," Climatic Change, Springer, vol. 162(3), pages 1107-1125, October.
    17. Benjamin Kipkemboi Kogo & Lalit Kumar & Richard Koech, 2021. "Climate change and variability in Kenya: a review of impacts on agriculture and food security," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 23-43, January.
    18. Ali Sardar Shahraki & Tommaso Caloiero & Ommolbanin Bazrafshan, 2023. "Influence of Climatic Factors on Yields of Pistachio, Mango, and Bananas in Iran," Sustainability, MDPI, vol. 15(11), pages 1-14, June.
    19. Kumar Bahadur Darjee & Ramesh Kumar Sunam & Michael Köhl & Prem Raj Neupane, 2021. "Do National Policies Translate into Local Actions? Analyzing Coherence between Climate Change Adaptation Policies and Implications for Local Adaptation in Nepal," Sustainability, MDPI, vol. 13(23), pages 1-32, November.
    20. Debashis Roy & Avishek Datta & John K. M. Kuwornu & Farhad Zulfiqar, 2021. "Comparing farmers’ perceptions of climate change with meteorological trends and examining farm adaptation measures in hazard-prone districts of northwest Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8699-8721, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1415-:d:1460523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.