IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i6p865-d1405574.html
   My bibliography  Save this article

A Full-Coverage Path Planning Method for an Orchard Mower Based on the Dung Beetle Optimization Algorithm

Author

Listed:
  • Lixing Liu

    (College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China)

  • Xu Wang

    (College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China)

  • Hongjie Liu

    (College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China
    Hebei Province Smart Agriculture Equipment Technology Innovation Center, Baoding 071001, China)

  • Jianping Li

    (College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China
    Hebei Province Smart Agriculture Equipment Technology Innovation Center, Baoding 071001, China)

  • Pengfei Wang

    (College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China
    Hebei Province Smart Agriculture Equipment Technology Innovation Center, Baoding 071001, China)

  • Xin Yang

    (College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China
    Hebei Province Smart Agriculture Equipment Technology Innovation Center, Baoding 071001, China)

Abstract

In order to optimize the operating path of orchard mowers and improve their efficiency, we propose an MI-DBO (multi-strategy improved dung beetle optimization algorithm) to solve the problem of full-coverage path planning for mowers in standardized quadrilateral orchard environments. First, we analyzed the operation scenario of lawn mowers in standardized orchards, transformed the full-coverage path planning problem into a TSP (traveling salesman problem), and mathematically modeled the U-turn and T-turn strategies based on the characteristics of lawn mowers in orchards. Furthermore, in order to overcome the issue of uneven distribution of individual positions in the DBO (dung beetle optimization) algorithm and the tendency to fall into local optimal solutions, we incorporated Bernoulli mapping and the convex lens reverse-learning strategy in the initialization stage of DBO to ensure a uniform distribution of the initial population. During the algorithm iteration stage, we incorporated the Levy flight strategy into the position update formulas of breeding beetles, foraging beetles, and stealing beetles in the DBO algorithm, allowing them to escape from local optimal solutions. Simulation experiments show that for 18 types of orchards with different parameters, MI-DBO can find the mowing machine’s operation paths. Compared with other common swarm intelligence algorithms, MI-DBO has the shortest average path length of 456.36 m and can ensure faster optimization efficiency. Field experiments indicate that the algorithm-optimized paths do not effectively reduce the mowing machine’s missed mowing rate, but the overall missed mowing rate is controlled below 0.8%, allowing for the completion of mowing operations effectively. Compared with other algorithms, MI-DBO has the least time and fuel consumption for operations. Compared to the row-by-row operation method, using paths generated by MI-DBO reduces the operation time by an average of 1193.67 s and the fuel consumption rate by an average of 9.99%. Compared to paths generated by DBO, the operation time is reduced by an average of 314.33 s and the fuel consumption rate by an average of 2.79%.

Suggested Citation

  • Lixing Liu & Xu Wang & Hongjie Liu & Jianping Li & Pengfei Wang & Xin Yang, 2024. "A Full-Coverage Path Planning Method for an Orchard Mower Based on the Dung Beetle Optimization Algorithm," Agriculture, MDPI, vol. 14(6), pages 1-17, May.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:865-:d:1405574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/6/865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/6/865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neungmatcha, Woraya, 2016. "Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operationsAuthor-Name: Sethanan, Kanchana," European Journal of Operational Research, Elsevier, vol. 252(3), pages 969-984.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
    2. Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2020. "On the construction of a feasible range of multidimensional poverty under benchmark weight uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 415-427.
    3. Liu, Ruochen & Li, Jianxia & fan, Jing & Mu, Caihong & Jiao, Licheng, 2017. "A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1028-1051.
    4. Martin Filip & Tomas Zoubek & Roman Bumbalek & Pavel Cerny & Carlos E. Batista & Pavel Olsan & Petr Bartos & Pavel Kriz & Maohua Xiao & Antonin Dolan & Pavol Findura, 2020. "Advanced Computational Methods for Agriculture Machinery Movement Optimization with Applications in Sugarcane Production," Agriculture, MDPI, vol. 10(10), pages 1-20, September.
    5. William Pettersson & Melih Ozlen, 2020. "Multiobjective Integer Programming: Synergistic Parallel Approaches," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 461-472, April.
    6. Qiu, Rui & Xu, Jiuping & Ke, Ruimin & Zeng, Ziqiang & Wang, Yinhai, 2020. "Carbon pricing initiatives-based bi-level pollution routing problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 203-217.
    7. Chih, Mingchang, 2023. "Stochastic stability analysis of particle swarm optimization with pseudo random number assignment strategy," European Journal of Operational Research, Elsevier, vol. 305(2), pages 562-593.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:865-:d:1405574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.