IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i5p737-d1391116.html
   My bibliography  Save this article

Sliding Mode Speed Control in Synchronous Motors for Agriculture Machinery: A Chattering Suppression Approach

Author

Listed:
  • David Marcos-Andrade

    (Departamento de Posgrado, Universidad Politécnica de Tulancingo, Tulancingo 43629, Mexico)

  • Francisco Beltran-Carbajal

    (Departamento de Energía, Unidad Azcapotzalco, Universidad Autónoma Metropolitana, Azcapotzalco, Mexico City 02200, Mexico)

  • Ivan Rivas-Cambero

    (Departamento de Posgrado, Universidad Politécnica de Tulancingo, Tulancingo 43629, Mexico)

  • Hugo Yañez-Badillo

    (Departamento de Investigación, TecNM: Tecnologico de Estudios Superiores de Tianguistenco, Tianguistenco 52650, Mexico)

  • Antonio Favela-Contreras

    (Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico)

  • Julio C. Rosas-Caro

    (Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Mexico)

Abstract

Synchronous motors have extended their presence in different applications, specifically in high-demand environments such as agronomy. These uses need advanced and better control strategies to improve energy efficiency. Within this context, sliding mode control has demonstrated effectiveness in electric machine control due to its advantages in robustness and quick adaptation to uncertain dynamic system disturbances. Nevertheless, this control technique presents the undesirable chattering phenomenon due to the discontinuous control action. This paper introduces a novel speed integral control scheme based on sliding modes for synchronous motors. This approach is designed to track smooth speed profiles and is evaluated through several numeric simulations to verify its robustness against variable torque loads. This approach addresses using electric motors for different applications such as irrigation systems, greenhouses, pumps, and others. Moreover, to address the chattering problem, different sign function approximations are evaluated in the control scheme. Then, the most effective functions for suppressing the chattering phenomenon through extensive comparative analysis are identified. Integral compensation in this technique demonstrates improvement in motor performance, while sign function approximations show a chattering reduction. Different study cases prove the robustness of this control scheme for large-scale synchronous motors. The simulation results validate the proposed control scheme based on sliding modes with integral compensation, by achieving chattering reduction and obtaining an efficient control scheme against uncertain disturbances in synchronous motors for agronomy applications.

Suggested Citation

  • David Marcos-Andrade & Francisco Beltran-Carbajal & Ivan Rivas-Cambero & Hugo Yañez-Badillo & Antonio Favela-Contreras & Julio C. Rosas-Caro, 2024. "Sliding Mode Speed Control in Synchronous Motors for Agriculture Machinery: A Chattering Suppression Approach," Agriculture, MDPI, vol. 14(5), pages 1-25, May.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:5:p:737-:d:1391116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/5/737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/5/737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. En Lu & Jialin Xue & Tiaotiao Chen & Song Jiang, 2023. "Robust Trajectory Tracking Control of an Autonomous Tractor-Trailer Considering Model Parameter Uncertainties and Disturbances," Agriculture, MDPI, vol. 13(4), pages 1-17, April.
    2. Francisco Beltran-Carbajal & Hugo Yañez-Badillo & Ruben Tapia-Olvera & Julio C. Rosas-Caro & Carlos Sotelo & David Sotelo, 2023. "Neural Network Trajectory Tracking Control on Electromagnetic Suspension Systems," Mathematics, MDPI, vol. 11(10), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phummarin Thavitchasri & Dechrit Maneetham & Padma Nyoman Crisnapati, 2024. "Intelligent Surface Recognition for Autonomous Tractors Using Ensemble Learning with BNO055 IMU Sensor Data," Agriculture, MDPI, vol. 14(9), pages 1-21, September.
    2. Daniel Galvan-Perez & Francisco Beltran-Carbajal & Ivan Rivas-Cambero & Hugo Yañez-Badillo & Antonio Favela-Contreras & Ruben Tapia-Olvera, 2023. "Motion-Tracking Control of Mobile Manipulation Robotic Systems Using Artificial Neural Networks for Manufacturing Applications," Mathematics, MDPI, vol. 11(16), pages 1-49, August.
    3. Hamed Etezadi & Sulaymon Eshkabilov, 2024. "A Comprehensive Overview of Control Algorithms, Sensors, Actuators, and Communication Tools of Autonomous All-Terrain Vehicles in Agriculture," Agriculture, MDPI, vol. 14(2), pages 1-42, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:5:p:737-:d:1391116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.