IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i12p2145-d1529844.html
   My bibliography  Save this article

Enhancing Regional Topsoil Total Nitrogen Mapping Through Differentiated Fusion of Ground Hyperspectral Data and Satellite Images Under Low Vegetation Cover

Author

Listed:
  • Rongpeng He

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China)

  • Jihua Meng

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China)

  • Yanfei Du

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China)

  • Zhenxin Lin

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China)

  • Xinyan You

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China)

  • Xinyu Gao

    (Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
    International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China)

Abstract

Total nitrogen in soil (STN) serves as a crucial indicator of soil nutrient content and provides an essential nitrogen source necessary for crop growth. Precisely inversion of STN content is crucial for the sustainable management of soil resources and the advancement of agricultural development, particularly to achieve efficient fertilization—reduction in fertilizer usage without compromising yield or increase in yield while maintaining the total fertilization amount. Spectroscopy technology is regarded as an ideal non-destructive method for nutrient detection. However, due to the weak spectral signals of STN and its spatial heterogeneity, hyperspectral imaging technology presents significant potential for high-resolution measurements and precise characterization of STN heterogeneity. In this paper, the STN content was selected as the study subject, and three aspects of soil spectral feature enhancement, multi-source remote sensing data differentiated fusion, and STN content inversion model construction were studied. Therefore, a differentiated fusion of enhanced multispectral image bands (DFE_MSIBs) method combined with Random Forest (RF) algorithms was developed for spectral inversion of STN content. The findings demonstrate the following: 1. The enhanced spectral characteristics and differentiated fusion method not only strengthen the relationship between STN and Sentinel-2A MSI data but also enhance the precision of regional STN inversion models. 2. For the differentiated fusion of enhanced multispectral image bands (DFE_MSIBs) method combined with Random Forest (RF) algorithms, the R2 was 0.95, RMSE was 0.10 g/kg, and LCCC was 0.89. 3. Compared to the unfused model, the average R2 value was increased by 0.02, the average RMSE was decreased by 0.01 g/kg, and the average LCCC was increased by 0.03. These findings hold practical significance for utilizing multi-source remote sensing data in STN mapping and precision fertilization in agricultural fields.

Suggested Citation

  • Rongpeng He & Jihua Meng & Yanfei Du & Zhenxin Lin & Xinyan You & Xinyu Gao, 2024. "Enhancing Regional Topsoil Total Nitrogen Mapping Through Differentiated Fusion of Ground Hyperspectral Data and Satellite Images Under Low Vegetation Cover," Agriculture, MDPI, vol. 14(12), pages 1-27, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2145-:d:1529844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/12/2145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/12/2145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shuai Wang & Qiubing Wang & Kabindra Adhikari & Shuhai Jia & Xinxin Jin & Hongbin Liu, 2016. "Spatial-Temporal Changes of Soil Organic Carbon Content in Wafangdian, China," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
    2. Avishai Gavish & Michael Tyler & Alissa C. Greenwald & Rouven Hoefflin & Dor Simkin & Roi Tschernichovsky & Noam Galili Darnell & Einav Somech & Chaya Barbolin & Tomer Antman & Daniel Kovarsky & Thoma, 2023. "Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours," Nature, Nature, vol. 618(7965), pages 598-606, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Martínez Pastur & Marie-Claire Aravena Acuña & Jimena E. Chaves & Juan M. Cellini & Eduarda M. O. Silveira & Julián Rodriguez-Souilla & Axel von Müller & Ludmila La Manna & María V. Lencinas, 2023. "Nitrogenous and Phosphorus Soil Contents in Tierra del Fuego Forests: Relationships with Soil Organic Carbon, Climate, Vegetation and Landscape Metrics," Land, MDPI, vol. 12(5), pages 1-18, April.
    2. Cuiying Zhou & Xingxing Ge & Wei Huang & Dexian Li & Zhen Liu, 2019. "Effects of Aqua-Dispersing Nano-Binder on Clay Conductivity at Different Temperatures," Sustainability, MDPI, vol. 11(18), pages 1-13, September.
    3. Antti Kiviaho & Sini K. Eerola & Heini M. L. Kallio & Maria K. Andersen & Miina Hoikka & Aliisa M. Tiihonen & Iida Salonen & Xander Spotbeen & Alexander Giesen & Charles T. A. Parker & Sinja Taavitsai, 2024. "Single cell and spatial transcriptomics highlight the interaction of club-like cells with immunosuppressive myeloid cells in prostate cancer," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Li Qi & Shuai Wang & Qianlai Zhuang & Zijiao Yang & Shubin Bai & Xinxin Jin & Guangyu Lei, 2019. "Spatial-Temporal Changes in Soil Organic Carbon and pH in the Liaoning Province of China: A Modeling Analysis Based on Observational Data," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    5. F. Nadalin & M. J. Marzi & M. Pirra Piscazzi & P. Fuentes-Bravo & S. Procaccia & M. Climent & P. Bonetti & C. Rubolino & B. Giuliani & I. Papatheodorou & J. C. Marioni & F. Nicassio, 2024. "Multi-omic lineage tracing predicts the transcriptional, epigenetic and genetic determinants of cancer evolution," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    6. Anja Fischer & Thomas K. Albert & Natalia Moreno & Marta Interlandi & Jana Mormann & Selina Glaser & Paurnima Patil & Flavia W. Faria & Mathis Richter & Archana Verma & Sebastian T. Balbach & Rabea Wa, 2024. "Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Hongbin Liu & Shunting Li & Yuepeng Zhou, 2019. "Spatial-Temporal Variability of Soil Organic Matter in Urban Fringe over 30 Years: A Case Study in Northeast China," IJERPH, MDPI, vol. 17(1), pages 1-22, December.
    8. Chuanhong Xu & Wenhua Xiang & Mengmeng Gou & Liang Chen & Pifeng Lei & Xi Fang & Xiangwen Deng & Shuai Ouyang, 2018. "Effects of Forest Restoration on Soil Carbon, Nitrogen, Phosphorus, and Their Stoichiometry in Hunan, Southern China," Sustainability, MDPI, vol. 10(6), pages 1-14, June.
    9. Aleksandr Ianevski & Kristen Nader & Kyriaki Driva & Wojciech Senkowski & Daria Bulanova & Lidia Moyano-Galceran & Tanja Ruokoranta & Heikki Kuusanmäki & Nemo Ikonen & Philipp Sergeev & Markus Vähä-Ko, 2024. "Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Junho Kang & Jun Hyeong Lee & Hongui Cha & Jinhyeon An & Joonha Kwon & Seongwoo Lee & Seongryong Kim & Mert Yakup Baykan & So Yeon Kim & Dohyeon An & Ah-Young Kwon & Hee Jung An & Se-Hoon Lee & Jung K, 2024. "Systematic dissection of tumor-normal single-cell ecosystems across a thousand tumors of 30 cancer types," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Zefang Zhao & Yanlong Guo & Haiyan Wei & Qiao Ran & Wei Gu, 2017. "Predictions of the Potential Geographical Distribution and Quality of a Gynostemma pentaphyllum Base on the Fuzzy Matter Element Model in China," Sustainability, MDPI, vol. 9(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2145-:d:1529844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.