IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1592-d1215189.html
   My bibliography  Save this article

Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning

Author

Listed:
  • Wenjie Zhang

    (College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Liang Zhu

    (State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Qifeng Zhuang

    (College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Dong Chen

    (College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Tao Sun

    (College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

Abstract

Nitrogen (N) and phosphorus (P) are primary indicators of soil nutrients in agriculture. Accurate management of these nutrients is essential for ensuring food security. High-resolution, multi-spectral remote sensing images can provide crucial information for mapping soil nutrients at the field scale. This study compares the capabilities of ZH-1 and Sentinel-2 satellite data, along with different spectral indices, in mapping soil nutrients (total N and Olsen-P) using two machine learning algorithms, random forest (RF) and XGBoost (XGB). Two agricultural fields in Suihua City were selected as the study areas for this investigation. The results showed that Sentinel-2 data performed best in computing the total N content in soil using the RF model ( R 2 = 0.74, RMSE = 0.10 g/kg). However, for the soil Olsen-P content, the XGBoost model performed better with ZH-1 data ( R 2 = 0.75, RMSE = 9.79 mg/kg) than the RF model. This study demonstrates that both ZH-1 and Sentinel-2 satellite data perform well in terms of accurately mapping soil total N and Olsen-P contents using machine learning. Due to its higher spectral and spatial resolution, ZH-1 remote sensing data provides more detailed information on soil nutrient content during Olsen-P inversion and exhibits comparable accuracy.

Suggested Citation

  • Wenjie Zhang & Liang Zhu & Qifeng Zhuang & Dong Chen & Tao Sun, 2023. "Mapping Cropland Soil Nutrients Contents Based on Multi-Spectral Remote Sensing and Machine Learning," Agriculture, MDPI, vol. 13(8), pages 1-19, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1592-:d:1215189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin Zhang & Zhe Liu & Diyou Liu & Quan Xiong & Ning Yang & Tianwei Ren & Chao Zhang & Xiaodong Zhang & Shaoming Li, 2019. "Crop Mapping Based on Historical Samples and New Training Samples Generation in Heilongjiang Province, China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    2. Kingsley JOHN & Isong Abraham Isong & Ndiye Michael Kebonye & Esther Okon Ayito & Prince Chapman Agyeman & Sunday Marcus Afu, 2020. "Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil," Land, MDPI, vol. 9(12), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiantao He & Jinting Zhu & Pinxuan Li & Dongxing Zhang & Li Yang & Tao Cui & Kailiang Zhang & Xiaolong Lin, 2024. "Research on a Multi-Lens Multispectral Camera for Identifying Haploid Maize Seeds," Agriculture, MDPI, vol. 14(6), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas Glass & Brenda Molano-Flores & Eduardo Dias de Oliveira & Erika Meraz & Samira Umar & Christopher J. Whelan & Miquel A. Gonzalez-Meler, 2021. "Does Pastoral Land-Use Legacy Influence Topsoil Carbon and Nitrogen Accrual Rates in Tallgrass Prairie Restorations?," Land, MDPI, vol. 10(7), pages 1-20, July.
    2. Assefa Abegaz & Ashenafi Ali & Lulseged Tamene & Wuletawu Abera & Jo U. Smith, 2022. "Modeling long-term attainable soil organic carbon sequestration across the highlands of Ethiopia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5131-5162, April.
    3. Chunyang Wang & Huan Zhang & Xifang Wu & Wei Yang & Yanjun Shen & Bibo Lu & Jianlong Wang, 2022. "AUTS: A Novel Approach to Mapping Winter Wheat by Automatically Updating Training Samples Based on NDVI Time Series," Agriculture, MDPI, vol. 12(6), pages 1-16, June.
    4. Ramalingam Kumaraperumal & Sellaperumal Pazhanivelan & Vellingiri Geethalakshmi & Moorthi Nivas Raj & Dhanaraju Muthumanickam & Ragunath Kaliaperumal & Vishnu Shankar & Athira Manikandan Nair & Manoj , 2022. "Comparison of Machine Learning-Based Prediction of Qualitative and Quantitative Digital Soil-Mapping Approaches for Eastern Districts of Tamil Nadu, India," Land, MDPI, vol. 11(12), pages 1-26, December.
    5. Fei Chen & Xiaoyong Bai & Fang Liu & Guangjie Luo & Yichao Tian & Luoyi Qin & Yue Li & Yan Xu & Jinfeng Wang & Luhua Wu & Chaojun Li & Sirui Zhang & Chen Ran, 2022. "Analysis Long-Term and Spatial Changes of Forest Cover in Typical Karst Areas of China," Land, MDPI, vol. 11(8), pages 1-20, August.
    6. Xinlei Hu & Zuliang Zhao & Lin Zhang & Zhe Liu & Shaoming Li & Xiaodong Zhang, 2019. "A High-Temperature Risk Assessment Model for Maize Based on MODIS LST," Sustainability, MDPI, vol. 11(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1592-:d:1215189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.