IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i6p1259-d1173291.html
   My bibliography  Save this article

Study of Potential Application Air Curtains in Livestock Premises at Cattle Management Farms

Author

Listed:
  • Aleksey Kuzmichev

    (Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia)

  • Aleksei Khimenko

    (Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia)

  • Dmitry Tikhomirov

    (Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia)

  • Dmitry Budnikov

    (Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia)

  • Marek Jasiński

    (WWSIS “Horyzont”, 54-239 Wrocław, Poland)

  • Vadim Bolshev

    (Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia)

  • Ivan Ignatkin

    (Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, 127550 Moscow, Russia)

Abstract

Recommendations on the selection of air curtains and the calculation of their parameters for livestock premises in cattle management farms are made. The air curtain functioning principle is analyzed from the air jet theory point of view. The block diagram and modular design of air curtains with a variable air jet direction vector and with controlled slit width are designed. Laboratory tests of the newly designed air curtain structure are performed in accordance with the microclimate requirements for the cattle management farm premises. Based on the experimental results, the major air curtain parameters are calculated for the range from 10° to 60° of angle α between the direction of the air jet outward from the air curtain slit and aperture plane, and for the air curtain slit width b 0 in the range from 0.05 m to 0.15 m with the account of the wind speed V w variations. Calculated values for amounts of energy that have to be consumed to ensure the required air jet velocity, in the output from the air curtain, and those for the quantity of thermal energy required to heat the air supplied to the air curtain, depending on the angle α and on the slit width b 0 , can be helpful for selecting the power capacity of both the air curtain fan and electric heater. A block diagram of the air curtain control for cattle management farm premises is designed, enabling automatic control of the airflow rate, the angle of the air jet output from the air curtain slit, and the temperature of the heated air supplied to the air curtain, considering particular climate conditions. According to the preliminary estimate, applications of the newly designed air curtain will make it possible to reduce the energy consumed to maintain the required microclimate conditions in cattle management premises by 10% to 15% in the cold period.

Suggested Citation

  • Aleksey Kuzmichev & Aleksei Khimenko & Dmitry Tikhomirov & Dmitry Budnikov & Marek Jasiński & Vadim Bolshev & Ivan Ignatkin, 2023. "Study of Potential Application Air Curtains in Livestock Premises at Cattle Management Farms," Agriculture, MDPI, vol. 13(6), pages 1-19, June.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1259-:d:1173291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/6/1259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/6/1259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aleksei Khimenko & Dmitry Tikhomirov & Stanislav Trunov & Aleksey Kuzmichev & Vadim Bolshev & Olga Shepovalova, 2022. "Electric Heating System with Thermal Storage Units and Ceiling Fans for Cattle-Breeding Farms," Agriculture, MDPI, vol. 12(11), pages 1-13, October.
    2. Dmitry Tikhomirov & Andrey Izmailov & Yakov Lobachevsky & Anatoly Tikhomirov, 2020. "Energy Consumption Optimization in Agriculture and Development Perspectives," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 9(4), pages 1-19, October.
    3. Zbynek Havelka & Radim Kunes & Yevhen Kononets & Jessica Elizabeth Stokes & Lubos Smutny & Pavel Olsan & Jan Kresan & Radim Stehlik & Petr Bartos & Maohua Xiao & Pavel Kriz & Pavol Findura & David Roz, 2022. "Technology of Microclimate Regulation in Organic and Energy-Sustainable Livestock Production," Agriculture, MDPI, vol. 12(10), pages 1-24, September.
    4. Hyung-Kweon Kim & Geum-Choon Kang & Jong-Pil Moon & Tae-Seok Lee & Sung-Sik Oh, 2018. "Estimation of Thermal Performance and Heat Loss in Plastic Greenhouses with and without Thermal Curtains," Energies, MDPI, vol. 11(3), pages 1-11, March.
    5. Ivan Ignatkin & Sergey Kazantsev & Nikolay Shevkun & Dmitry Skorokhodov & Nikita Serov & Aleksei Alipichev & Vladimir Panchenko, 2023. "Developing and Testing the Air Cooling System of a Combined Climate Control Unit Used in Pig Farming," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolae-Valentin Vlăduț & Nicoleta Ungureanu, 2024. "Beyond Agriculture 4.0: Design and Development of Modern Agricultural Machines and Production Systems," Agriculture, MDPI, vol. 14(7), pages 1-4, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadim Bolshev & Vladimir Panchenko & Alexey Sibirev, 2023. "Engineering Innovations in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-4, June.
    2. Dmitry Tikhomirov & Aleksei Khimenko & Aleksey Kuzmichev & Vadim Bolshev & Gennady Samarin & Ivan Ignatkin, 2023. "Local Heating through the Application of a Thermoelectric Heat Pump for Prenursery Pigs," Agriculture, MDPI, vol. 13(5), pages 1-14, April.
    3. Paweł Sokołowski & Grzegorz Nawalany & Tomasz Jakubowski & Ernest Popardowski & Vasyl Lopushniak & Atilgan Atilgan, 2022. "Numerical Analysis of Thermal Impact between the Cooling Facility and the Ground," Energies, MDPI, vol. 15(24), pages 1-16, December.
    4. Hyung-Kweon Kim & Young-Sun Ryou & Young-Hwa Kim & Tae-Seok Lee & Sung-Sik Oh & Yong-Hyeon Kim, 2021. "Estimating the Thermal Properties of the Cover and the Floor in a Plastic Greenhouse," Energies, MDPI, vol. 14(7), pages 1-11, April.
    5. Rabiu, Anis & Adesanya, Misbaudeen Aderemi & Na, Wook-Ho & Ogunlowo, Qazeem O. & Akpenpuun, Timothy D. & Kim, Hyeon Tae & Lee, Hyun-Woo, 2023. "Thermal performance and energy cost of Korean multispan greenhouse energy-saving screens," Energy, Elsevier, vol. 285(C).
    6. Ivan Ignatkin & Sergey Kazantsev & Nikolay Shevkun & Dmitry Skorokhodov & Nikita Serov & Aleksei Alipichev & Vladimir Panchenko, 2023. "Developing and Testing the Air Cooling System of a Combined Climate Control Unit Used in Pig Farming," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    7. Sedat Boyacı & Atilgan Atilgan & Joanna Kocięcka & Daniel Liberacki & Roman Rolbiecki & Barbara Jagosz, 2023. "Determination of the Effect of a Thermal Curtain Used in a Greenhouse on the Indoor Climate and Energy Savings," Energies, MDPI, vol. 16(23), pages 1-16, November.
    8. Haopu Li & Haoming Li & Bugao Li & Jiayuan Shao & Yanbo Song & Zhenyu Liu, 2023. "Smart Temperature and Humidity Control in Pig House by Improved Three-Way K-Means," Agriculture, MDPI, vol. 13(10), pages 1-22, October.
    9. Adnan Rasheed & Wook Ho Na & Jong Won Lee & Hyeon Tae Kim & Hyun Woo Lee, 2019. "Optimization of Greenhouse Thermal Screens for Maximized Energy Conservation," Energies, MDPI, vol. 12(19), pages 1-20, September.
    10. Wenfei Guan & Wenzhong Guo & Fan Chen & Xiaobei Han & Haiguang Wang & Weituo Sun & Qian Zhao & Dongdong Jia & Xiaoming Wei & Qingzhen Zhu, 2024. "Multi-Span Greenhouse Energy Saving by External Insulation: System Design and Implementation," Agriculture, MDPI, vol. 14(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1259-:d:1173291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.