IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i6p1204-d1165342.html
   My bibliography  Save this article

Design and Experiment of a Low-Loss Harvesting Test Platform for Cabbage

Author

Listed:
  • Wenyu Tong

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
    College of Engineering, Shenyang Agricultural University, Shenyang 110866, China)

  • Jianfei Zhang

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Guangqiao Cao

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Zhiyu Song

    (Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100083, China)

  • Xiaofeng Ning

    (College of Engineering, Shenyang Agricultural University, Shenyang 110866, China)

Abstract

In order to explore the mechanism and influence mechanism of cabbage harvest damage, a low-loss cabbage harvest test platform was designed on the basis of combining the physical characteristics of cabbage with the mechanical characteristics of mechanical harvest and the cabbage harvest operation process. Through the design of key components of the test platform harvesting, the key parameters of the pulling-out device, the reel device, the flexible clamping and conveying device, and the double-disc cutting device were determined. The movement changes of cabbage during pulling out, conveying, and cutting were analyzed to clarify the process of damage generation and critical conditions of damage in cabbage harvesting operations. The test results showed that when the speed of the pulling out device was controlled at 80–120 r/min, the speed of the clamping and conveying device was controlled at 120–240 r/min, and the speed of the double disc cutter was controlled at 140–180 r/min, the average success rate of pulling on the low-loss harvesting test platform was 92.7%; the average damage rate of the pulling process was 7.32%; the average success rate of clamping and conveying was 88.6%; the average damage rate of the clamping and conveying link was 12%; the average success rate of root cutting was 89.3%; and the average damage rate of the cutting link was 11.34%. The average qualified rate of harvesting in the pulling link was 86.7%, the average qualified rate of harvesting in the clamping and conveying link was 75.3%, and the average qualified rate of harvesting in the cutting link was 77.3%. All the performance indicators meet the design requirements and relevant standards, and the research results can provide a reference for the development and structural improvement of low-loss harvesting equipment for cabbage.

Suggested Citation

  • Wenyu Tong & Jianfei Zhang & Guangqiao Cao & Zhiyu Song & Xiaofeng Ning, 2023. "Design and Experiment of a Low-Loss Harvesting Test Platform for Cabbage," Agriculture, MDPI, vol. 13(6), pages 1-20, June.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1204-:d:1165342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/6/1204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/6/1204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Ibrahim El Didamony & Ahmed Mohamed El Shal, 2020. "Fabrication and Evaluation of a Cabbage Harvester Prototype," Agriculture, MDPI, vol. 10(12), pages 1-11, December.
    2. Gaokun Shi & Jingbin Li & Za Kan & Longpeng Ding & Huizhe Ding & Lun Zhou & Lihong Wang, 2022. "Design and Parameters Optimization of a Provoke-Suction Type Harvester for Ground Jujube Fruit," Agriculture, MDPI, vol. 12(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huimin Xu & Gaohong Yu & Chenyu Niu & Xiong Zhao & Yimiao Wang & Yijin Chen, 2023. "Design and Experiment of an Underactuated Broccoli-Picking Manipulator," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
    2. Jinming Zheng & Lin Wang & Xiaochan Wang & Yinyan Shi & Zhenyu Yang, 2023. "Parameter Calibration of Cabbages ( Brassica oleracea L.) Based on the Discrete Element Method," Agriculture, MDPI, vol. 13(3), pages 1-17, February.
    3. Hezheng Wang & Silin Cao & Yongrui Liu & Yuxin Yang & Xiangyu Meng & Peng Ji, 2022. "Design of Cotton Recovery Device and Operation Parameters Optimization," Agriculture, MDPI, vol. 12(9), pages 1-17, August.
    4. Zhiyuan Zhang & Jingbin Li & Xianfei Wang & Yongman Zhao & Shuaikang Xue & Zipeng Su, 2022. "Parameters Optimization and Test of an Arc-Shaped Nail-Tooth Roller-Type Recovery Machine for Sowing Layer Residual Film," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    5. Fu Zhang & Zijun Chen & Yafei Wang & Ruofei Bao & Xingguang Chen & Sanling Fu & Mimi Tian & Yakun Zhang, 2023. "Research on Flexible End-Effectors with Humanoid Grasp Function for Small Spherical Fruit Picking," Agriculture, MDPI, vol. 13(1), pages 1-18, January.
    6. Jianfei Zhang & Guangqiao Cao & Yue Jin & Wenyu Tong & Ying Zhao & Zhiyu Song, 2022. "Parameter Optimization and Testing of a Self-Propelled Combine Cabbage Harvester," Agriculture, MDPI, vol. 12(10), pages 1-19, October.
    7. Lun Zhou & Jingbin Li & Longpeng Ding & Huizhe Ding & Gaokun Shi & Daolin Li, 2022. "Design and Evaluation of a Mechanical Floor-Standing Jujube Picker," Agriculture, MDPI, vol. 12(8), pages 1-20, August.
    8. Lun Zhou & Jingbin Li & Longpeng Ding & Huizhe Ding & Junpeng Liang, 2022. "Analysis and Design of Operating Parameters of Floor-Standing Jujube Pickup Device Based on Discrete Element Method," Agriculture, MDPI, vol. 12(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1204-:d:1165342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.