IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p1074-d1149392.html
   My bibliography  Save this article

Dynamic Cutting Performance Test and Parameter Optimization of Longicorn Bionic Blade for Industrial Hemp Harvester

Author

Listed:
  • Kunpeng Tian

    (College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China
    Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Bin Zhang

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Cheng Shen

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Haolu Liu

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Jicheng Huang

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Aimin Ji

    (College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China)

Abstract

In response to the unclear issue of whether the dynamic cutting performance and structural parameters of an industrial hemp blade, which was developed earlier based on the bionic prototype of the batocera horsfieldi, can be optimized in actual working conditions, this paper analyzes the effective clamping conditions of a reciprocating double-acting cutting blade for stalks and the cutting motion. To investigate the effect of different structural and motion parameters, as well as their interactions, of the bionic blade on cutting energy consumption, bionic blades with different combinations of tooth pitch and tooth angle were designed. A Box–Behnken response surface method with three factors and three levels was used to design an experimental scheme. Utilizing rigid-flexible coupling numerical simulation technology, numerical simulation experiments were conducted to investigate the cutting performance of industrial hemp stalks using the blade. A regression model for cutting energy consumption was established, and variance analysis indicated that tooth angle, speed ratio, and the interaction between tooth angle and speed ratio had an extremely significant effect on the regression model. The primary and secondary orders of factors affecting cutting energy consumption were determined to be: speed ratio > tooth angle > tooth pitch. Through optimization, the optimal parameter combination was found to be a blade tooth pitch of 6.61 mm, a tooth angle of 30°, and a speed ratio of 1.62. Under these conditions, the cutting energy consumption was 3947.99 mJ. The optimized parameters were verified through numerical simulation cutting experiments, and the results showed that the error compared with the optimization results was only 8.16%. This indicates that the optimization results have high credibility and further verifies the reliability of the model. This study can provide a reference for the development of cutting devices for industrial hemp harvesters and the selection of motion parameters.

Suggested Citation

  • Kunpeng Tian & Bin Zhang & Cheng Shen & Haolu Liu & Jicheng Huang & Aimin Ji, 2023. "Dynamic Cutting Performance Test and Parameter Optimization of Longicorn Bionic Blade for Industrial Hemp Harvester," Agriculture, MDPI, vol. 13(5), pages 1-13, May.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1074-:d:1149392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/1074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/1074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tao Wang & Zhengdao Liu & Xiaoli Yan & Guopeng Mi & Suyuan Liu & Kezhou Chen & Shilin Zhang & Xun Wang & Shuo Zhang & Xiaopeng Wu, 2022. "Finite Element Model Construction and Cutting Parameter Calibration of Wild Chrysanthemum Stem," Agriculture, MDPI, vol. 12(6), pages 1-12, June.
    2. Zhengdao Liu & Tao Wang & Suyuan Liu & Xiaoli Yan & Hongbo Zhao & Xiaopeng Wu & Shuo Zhang, 2023. "Design and Experimental Study of a Bionic Blade for Harvesting the Wild Chrysanthemum Stem," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunpeng Tian & Jicheng Huang & Bin Zhang & Aimin Ji & Zhonghua Xu, 2024. "Study on the Impact of Cutting Platform Vibration on Stalk Cutting Quality in Industrial Hemp," Agriculture, MDPI, vol. 14(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinpeng Hu & Lizhang Xu & Yang Yu & Jin Lu & Dianlei Han & Xiaoyu Chai & Qinhao Wu & Linjun Zhu, 2023. "Design and Experiment of Bionic Straw-Cutting Blades Based on Locusta Migratoria Manilensis," Agriculture, MDPI, vol. 13(12), pages 1-23, December.
    2. Jiali Fan & Yuyao Li & Bing Wang & Fengwei Gu & Feng Wu & Hongguang Yang & Zhaoyang Yu & Zhichao Hu, 2022. "An Experimental Study of Axial Poisson’s Ratio and Axial Young’s Modulus Determination of Potato Stems Using Image Processing," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    3. Hongmei Xia & Liuquan Li & Chuheng Deng & Shicheng Zhu & Jieqing Chen & Teng Yang & Runxin Huang & Wenbin Zhen, 2024. "Finite Element Simulation Parameter Calibration and Verification for Stem Cutting of Hydroponic Chinese Kale," Agriculture, MDPI, vol. 14(3), pages 1-14, March.
    4. Zhengdao Liu & Tao Wang & Suyuan Liu & Xiaoli Yan & Hongbo Zhao & Xiaopeng Wu & Shuo Zhang, 2023. "Design and Experimental Study of a Bionic Blade for Harvesting the Wild Chrysanthemum Stem," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    5. Kunpeng Tian & Jicheng Huang & Bin Zhang & Aimin Ji & Zhonghua Xu, 2024. "Study on the Impact of Cutting Platform Vibration on Stalk Cutting Quality in Industrial Hemp," Agriculture, MDPI, vol. 14(2), pages 1-15, February.
    6. Daipeng Lu & Wei Wang & Encai Bao & Shilin Wang & Xue Wu & Zongchun Bai & Yuxin Tang, 2022. "Cutting Mechanical Properties of Pumpkin Grafted Seedling Investigated by Finite Element Simulation and Experiment," Agriculture, MDPI, vol. 12(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1074-:d:1149392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.