IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i7p1026-d862704.html
   My bibliography  Save this article

An Experimental Study of Axial Poisson’s Ratio and Axial Young’s Modulus Determination of Potato Stems Using Image Processing

Author

Listed:
  • Jiali Fan

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Yuyao Li

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Bing Wang

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Fengwei Gu

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Feng Wu

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Hongguang Yang

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Zhaoyang Yu

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Zhichao Hu

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

Abstract

Potato stems removal is an important part of mechanized potato harvesting. However, there is still limited research on the physical properties of potato stems, especially the determination of Poisson’s ratio and Young’s modulus. This study determined the Poisson’s ratio and Young’s modulus of the potato main stems at different heights above the ground. Since the Potato stems are viscoelastic cylinders with non-standard circular cross-sections and complex textures, the existing determination methods are difficult to apply. We propose a new method to determine Poisson’s ratio and Young’s modulus by combining image processing in the mechanical compression process. The feasibility of this method was verified by determining the hardness value of 65 Shore ‘A’ nitrile rubber specimens, and the measured Poisson’s ratio and Young’s modulus were close to the relevant literature. This method can be used for the determination of potato stems. Atlantic potatoes are widely grown for their high solids content, resistance to pests and diseases, and good processing quality. Ten Atlantic potato main stems were randomly selected at harvest time. Specimens with a length of 11 ± 1 mm were taken at 0 cm, 10 cm, 20 cm, and 30 cm above the ground from each stem. The average values of the axial Poisson’s ratio were determined as: 0.21, 0.28, 0.30, 0.32, and the axial Young’s modulus as: 15.90 MPa, 12.38 MPa, 11.68 MPa, 11.28 MPa. This study has provided critical basic data for the discrete element model construction of potato stems and numerical simulation of potato haulm killers and potato harvesters, which is beneficial for improving the harvest quality of potato. It also provides new ideas for Poisson’s ratio and Young’s modulus measurement of non-regular cross-sectional cylindrical viscoelastic materials.

Suggested Citation

  • Jiali Fan & Yuyao Li & Bing Wang & Fengwei Gu & Feng Wu & Hongguang Yang & Zhaoyang Yu & Zhichao Hu, 2022. "An Experimental Study of Axial Poisson’s Ratio and Axial Young’s Modulus Determination of Potato Stems Using Image Processing," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:1026-:d:862704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/7/1026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/7/1026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiwei Wang & Jiale Song & Guoan Zhou & Longzhe Quan & Chunling Zhang & Liqing Chen, 2022. "Development and Numerical Simulation of a Precision Strip-Hole Layered Fertilization Subsoiler While Sowing Maize," Agriculture, MDPI, vol. 12(7), pages 1-19, June.
    2. Tao Wang & Zhengdao Liu & Xiaoli Yan & Guopeng Mi & Suyuan Liu & Kezhou Chen & Shilin Zhang & Xun Wang & Shuo Zhang & Xiaopeng Wu, 2022. "Finite Element Model Construction and Cutting Parameter Calibration of Wild Chrysanthemum Stem," Agriculture, MDPI, vol. 12(6), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinwu Du & Jin Liu & Yueyun Zhao & Chenglin Zhang & Xiaoxuan Zhang & Yanshuai Wang, 2024. "Design and Test of Discrete Element-Based Separation Roller Potato–Soil Separation Device," Agriculture, MDPI, vol. 14(7), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinpeng Hu & Lizhang Xu & Yang Yu & Jin Lu & Dianlei Han & Xiaoyu Chai & Qinhao Wu & Linjun Zhu, 2023. "Design and Experiment of Bionic Straw-Cutting Blades Based on Locusta Migratoria Manilensis," Agriculture, MDPI, vol. 13(12), pages 1-23, December.
    2. Hongmei Xia & Liuquan Li & Chuheng Deng & Shicheng Zhu & Jieqing Chen & Teng Yang & Runxin Huang & Wenbin Zhen, 2024. "Finite Element Simulation Parameter Calibration and Verification for Stem Cutting of Hydroponic Chinese Kale," Agriculture, MDPI, vol. 14(3), pages 1-14, March.
    3. Zhengdao Liu & Tao Wang & Suyuan Liu & Xiaoli Yan & Hongbo Zhao & Xiaopeng Wu & Shuo Zhang, 2023. "Design and Experimental Study of a Bionic Blade for Harvesting the Wild Chrysanthemum Stem," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    4. Kunpeng Tian & Bin Zhang & Cheng Shen & Haolu Liu & Jicheng Huang & Aimin Ji, 2023. "Dynamic Cutting Performance Test and Parameter Optimization of Longicorn Bionic Blade for Industrial Hemp Harvester," Agriculture, MDPI, vol. 13(5), pages 1-13, May.
    5. Kunpeng Tian & Jicheng Huang & Bin Zhang & Aimin Ji & Zhonghua Xu, 2024. "Study on the Impact of Cutting Platform Vibration on Stalk Cutting Quality in Industrial Hemp," Agriculture, MDPI, vol. 14(2), pages 1-15, February.
    6. Daipeng Lu & Wei Wang & Encai Bao & Shilin Wang & Xue Wu & Zongchun Bai & Yuxin Tang, 2022. "Cutting Mechanical Properties of Pumpkin Grafted Seedling Investigated by Finite Element Simulation and Experiment," Agriculture, MDPI, vol. 12(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:1026-:d:862704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.