IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p903-d1128021.html
   My bibliography  Save this article

Evaluating the Performance and Opportunity Cost of a Smart-Sensed Automated Irrigation System for Water-Saving Rice Cultivation in Temperate Australia

Author

Listed:
  • Matthew Champness

    (Centre for Regional and Rural Futures (CeRRF), Deakin University, Griffith, NSW 2680, Australia)

  • Leigh Vial

    (Research Institute for Environment and Livelihoods (RIEL), Charles Darwin University, Casuarina, NT 0810, Australia)

  • Carlos Ballester

    (Centre for Regional and Rural Futures (CeRRF), Deakin University, Griffith, NSW 2680, Australia)

  • John Hornbuckle

    (Centre for Regional and Rural Futures (CeRRF), Deakin University, Griffith, NSW 2680, Australia)

Abstract

Irrigated rice is the largest user of precious global water reserves. Adoption of water-saving irrigation practices is limited by the associated increased labor demand compared to flooded rice cultivation. Automated gravity surface irrigation systems have shown the potential to deliver significant labor savings in traditional flooded rice; however, widespread adoption does not seem apparent. Furthermore, previously designed systems have not been capable of irrigation control during both ponded and non-ponded periods. This study aimed to evaluate the performance of an automated irrigation system for rice with features not previously developed, provide direction for future systems and analyze the opportunity cost (the value of other on- or off-farm activities that could be conducted with that time) of time associated with automated irrigation. The automated irrigation system was found to successfully control 23–31 flush-irrigation events per bay per season in a 9-bay border-check aerobic rice field for 2 seasons. In addition, successful water control was achieved in a traditional drill-sown field with 4 flush irrigations followed by 15 weeks of permanent flooding. Labor savings of 82–88% during the flush-irrigation events and 57% during the ponding period were achieved with automation when compared to manual irrigation. However, the opportunity cost of the saved time was found to comprise the greatest benefit. Changing the analysis from using a flat “cash” cost of time to using opportunity cost of time reduced the payback period from seven to four years at the traditional ponded-rice site. In the more labor-intensive aerobic rice site, the payback period was reduced from three years to one year when accounting for the opportunity cost of time as opposed to only the direct costs. Whilst the payback period is site-dependent and cultivation method-dependent, these case studies demonstrate that automated gravity surface irrigation can enable novel water-saving practices in rice and provide substantial economic benefits.

Suggested Citation

  • Matthew Champness & Leigh Vial & Carlos Ballester & John Hornbuckle, 2023. "Evaluating the Performance and Opportunity Cost of a Smart-Sensed Automated Irrigation System for Water-Saving Rice Cultivation in Temperate Australia," Agriculture, MDPI, vol. 13(4), pages 1-16, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:903-:d:1128021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    2. Nicole McDonald & Eloise S. Fogarty & Amy Cosby & Peter McIlveen, 2022. "Technology Acceptance, Adoption and Workforce on Australian Cotton Farms," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    3. Carracelas, G. & Hornbuckle, J. & Rosas, J. & Roel, A., 2019. "Irrigation management strategies to increase water productivity in Oryza sativa (rice) in Uruguay," Agricultural Water Management, Elsevier, vol. 222(C), pages 161-172.
    4. Masseroni, Daniele & Moller, Peter & Tyrell, Reece & Romani, Marco & Lasagna, Alberto & Sali, Guido & Facchi, Arianna & Gandolfi, Claudio, 2018. "Evaluating performances of the first automatic system for paddy irrigation in Europe," Agricultural Water Management, Elsevier, vol. 201(C), pages 58-69.
    5. Dale D. Woolford & Matthew F. Smout & Deborah Turnbull & Kate M. Gunn, 2022. "Male Farmers’ Perspectives on Psychological Wellbeing Self-Management Strategies That Work for Them and How Barriers to Seeking Professional Mental Health Assistance Could Be Overcome," IJERPH, MDPI, vol. 19(19), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costanzo, Carmelina & Costabile, Pierfranco & Gangi, Fabiola & Argirò, Giuseppe & Bautista, Eduardo & Gandolfi, Claudio & Masseroni, Daniele, 2024. "Promoting precision surface irrigation through hydrodynamic modelling and microtopographic survey," Agricultural Water Management, Elsevier, vol. 301(C).
    2. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Brinkhoff, James & Houborg, Rasmus & Dunn, Brian W., 2022. "Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Kriti Poudel & Ram Hari Timilsina & Anish Bhattarai, 2020. "Effect Of Crop Establishment Methods On Yield Of Spring Rice At Khairahani, Chitwan, Nepal," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 3(1), pages 6-11, November.
    4. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    5. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    6. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    7. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    8. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
    9. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    10. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    11. Dasgupta, Pragna & Das, Bhabani S. & Sen, Soumitra K., 2015. "Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties," Agricultural Water Management, Elsevier, vol. 152(C), pages 110-118.
    12. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    13. Rodgers, Charles & Hellegers, Petra J.G.J., 2005. "Water pricing and valuation in Indonesia: case study of the Brantas River Basin," EPTD discussion papers 141, International Food Policy Research Institute (IFPRI).
    14. Hamidreza Qane'ei Kenarsari & Narges Banaeian & Mahdi Khani, 2024. "Selecting a sustainable array of machinery by integrating analytic hierarchy process with gray relational analysis," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(2), pages 109-119.
    15. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    16. Hafeez, Mohsin & Bundschuh, Jochen & Mushtaq, Shahbaz, 2014. "Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems," Applied Energy, Elsevier, vol. 114(C), pages 889-900.
    17. Zoffoli, Giovanni & Gangi, Fabiola & Ferretti, Gianni & Masseroni, Daniele, 2023. "The potential of a coordinated system of gates for flood irrigation management in paddy rice farm," Agricultural Water Management, Elsevier, vol. 289(C).
    18. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2021. "Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management," Agriculture, MDPI, vol. 11(4), pages 1-35, April.
    19. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    20. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:903-:d:1128021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.