IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p854-d1121690.html
   My bibliography  Save this article

Advancement in Agriculture Approaches with Agrivoltaics Natural Cooling in Large Scale Solar PV Farms

Author

Listed:
  • Noor Fadzlinda Othman

    (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Hybrid Agrivoltaic System Showcase (HAVs), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Mohammad Effendy Ya’acob

    (Hybrid Agrivoltaic System Showcase (HAVs), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
    Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Li Lu

    (Department of Electrical and Electronic, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Ahmad Hakiim Jamaluddin

    (Department of Statistics, School of Mathematics and Statistics, University of New South Wales, Sydney 2052, Australia)

  • Ahmad Suhaizi Mat Su

    (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Hashim Hizam

    (Department of Electrical and Electronic, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Rosnah Shamsudin

    (Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

  • Juju Nakasha Jaafar

    (Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia)

Abstract

The increasing concerns about the impact of large-scale solar photovoltaic farms on the environment and the energy crisis have raised many questions. This issue is mainly addressed by the integration of agriculture advancement in solar photovoltaic systems infrastructure facilities, commonly known as agrivoltaic. Through the use of these systems, the production of crops can be increased, and the efficiency of PV panels can be improved. Accordingly, adopting such synergistic paths forward can contribute toward building resilient energy-generation and food-production systems. The utilization of cooling techniques can provide a potential solution for the excessive heating of PV cells and lower cell temperatures. Effective cooling applied to PV cells significantly improves their electrical efficiency, as well as increasing their lifespan because of decreasing thermal stresses. This paper shares an overview of both active and passive cooling approaches in solar PV applications with an emphasis on newly developed agrivoltaic natural cooling systems. Actual data analysis at the 2 MWp Puchong agrivoltaic farm shows a significant value of 3% increase of the DC generation (on average) which is most beneficial to solar farm operators.

Suggested Citation

  • Noor Fadzlinda Othman & Mohammad Effendy Ya’acob & Li Lu & Ahmad Hakiim Jamaluddin & Ahmad Suhaizi Mat Su & Hashim Hizam & Rosnah Shamsudin & Juju Nakasha Jaafar, 2023. "Advancement in Agriculture Approaches with Agrivoltaics Natural Cooling in Large Scale Solar PV Farms," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:854-:d:1121690
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    2. Shenyi Wu & Chenguang Xiong, 2014. "Passive cooling technology for photovoltaic panels for domestic houses," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(2), pages 118-126.
    3. Benghanem, M. & Al-Mashraqi, A.A. & Daffallah, K.O., 2016. "Performance of solar cells using thermoelectric module in hot sites," Renewable Energy, Elsevier, vol. 89(C), pages 51-59.
    4. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    5. Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Ali Alahmer & Hegazy Rezk, 2020. "Design, Modeling, and Experimental Investigation of Active Water Cooling Concentrating Photovoltaic System," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    6. Jerome Wei Chiang Teng & Chew Beng Soh & Shiddalingeshwar Channabasappa Devihosur & Ryan Hong Soon Tay & Steve Kardinal Jusuf, 2022. "Effects of Agrivoltaic Systems on the Surrounding Rooftop Microclimate," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    2. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    3. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.
    4. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    5. Luo, Zhenyu & Zhu, Na & Hu, Pingfang & Lei, Fei & Zhang, Yaxi, 2022. "Simulation study on performance of PV-PCM-TE system for year-round analysis," Renewable Energy, Elsevier, vol. 195(C), pages 263-273.
    6. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    7. Jan Wajs & Aleksandra Golabek & Roksana Bochniak, 2019. "Photovoltaic Roof Tiles: The Influence of Heat Recovery on Overall Performance," Energies, MDPI, vol. 12(21), pages 1-12, October.
    8. Chandrasekar, M. & Senthilkumar, T., 2015. "Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures," Energy, Elsevier, vol. 90(P2), pages 1401-1410.
    9. Manxuan Xiao & Llewellyn Tang & Xingxing Zhang & Isaac Yu Fat Lun & Yanping Yuan, 2018. "A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems," Energies, MDPI, vol. 11(12), pages 1-39, December.
    10. Jaemin Kim & Sangmu Bae & Yongdong Yu & Yujin Nam, 2019. "Experimental and Numerical Study on the Cooling Performance of Fins and Metal Mesh Attached on a Photovoltaic Module," Energies, MDPI, vol. 13(1), pages 1-12, December.
    11. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    12. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    13. Poddar, V.S. & Ranawade, V.A. & Dhokey, N.B., 2022. "Study of synergy between photovoltaic, thermoelectric and direct evaporative cooling system for improved performance," Renewable Energy, Elsevier, vol. 182(C), pages 817-826.
    14. Abdalqader Ahmad & Helena Navarro & Saikat Ghosh & Yulong Ding & Jatindra Nath Roy, 2021. "Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems," Energies, MDPI, vol. 14(14), pages 1-18, July.
    15. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    16. Emad Abdelsalam & Hamza Alnawafah & Fares Almomani & Aya Mousa & Mohammad Jamjoum & Malek Alkasrawi, 2023. "Efficiency Improvement of Photovoltaic Panels: A Novel Integration Approach with Cooling Tower," Energies, MDPI, vol. 16(3), pages 1-13, January.
    17. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    18. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    19. Liang, Tao & Fu, Tong & Hu, Cong & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy," Renewable Energy, Elsevier, vol. 173(C), pages 942-952.
    20. Wassim Salameh & Jalal Faraj & Elias Harika & Rabih Murr & Mahmoud Khaled, 2021. "On the Optimization of Electrical Water Heaters: Modelling Simulations and Experimentation," Energies, MDPI, vol. 14(13), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:854-:d:1121690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.