IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p757-d1106633.html
   My bibliography  Save this article

A New Method for Estimating Irrigation Water Use via Soil Moisture

Author

Listed:
  • Liming Zhu

    (Henan Key Laboratory of Agrometeorological Ensuring and Applied Technique, Zhengzhou 450003, China
    College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
    Foundation of Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou 239099, China)

  • Zhangze Gu

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China)

  • Guizhi Tian

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China)

  • Jiahao Zhang

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China)

Abstract

The ability to obtain an accurate measure of irrigation water use is urgently needed in order to provide further scientific guidance for irrigation practices. This investigation took soil moisture and precipitation as the study objects and quantitatively analyzed their relationship by establishing four models: a linear model, a logarithmic model, a soil water balance model, and a similarity model. The results from building models on every site clearly revealed the relationship between soil moisture and precipitation and confirmed the feasibility of estimating irrigation water use when soil moisture data are known. Four models combined with soil moisture data were used to estimate irrigation water use. First, the 16 sites which monitor soil moisture conditions in Hebi City were identified as study objects, from which everyday meteorological data (temperature, precipitation, atmospheric pressure, wind speed, sunshine duration) and soil moisture data from 2015 to 2020 (totaling six years) were collected. Second, the eligible data from the first four years in the date range were used to create four kinds of models (linear model, logarithmic model, soil water balance model, and similarity model) to estimate the amount of water input to the soil surface based on soil moisture. Third, the eligible data from the last two years in the established date range were used to verify the established models on every site and then judge the accuracy of the models. For example, for site 53990, the RMSE of the linear model, logarithmic model, soil water balance model, and similarity model was 10,547, 10,302, 8619, and 7524, respectively. The results demonstrate that the similarity model proposed in this study can express the quantitative relationship between soil moisture and precipitation more accurately than the other three models. Based on this conclusion, the eligible soil moisture data known in the specific site were ultimately used to estimate the irrigation water use in the field by the relationship expressed in the similarity model. Compared with the amount of irrigation water data recorded, the estimated irrigation water use yielded by the similarity model in this study was 18.11% smaller. In a future study, microwave satellite remote sensing of soil moisture data, such as SMAP and SMOS soil moisture data, will be used to evaluate the performance of estimated regional irrigation water use.

Suggested Citation

  • Liming Zhu & Zhangze Gu & Guizhi Tian & Jiahao Zhang, 2023. "A New Method for Estimating Irrigation Water Use via Soil Moisture," Agriculture, MDPI, vol. 13(4), pages 1-15, March.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:757-:d:1106633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/757/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/757/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toureiro, Célia & Serralheiro, Ricardo & Shahidian, Shakib & Sousa, Adélia, 2017. "Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition," Agricultural Water Management, Elsevier, vol. 184(C), pages 211-220.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segovia-Cardozo, Daniel Alberto & Rodríguez-Sinobas, Leonor & Zubelzu, Sergio, 2019. "Water use efficiency of corn among the irrigation districts across the Duero river basin (Spain): Estimation of local crop coefficients by satellite images," Agricultural Water Management, Elsevier, vol. 212(C), pages 241-251.
    2. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    3. Christian Mera-Parra & Fernando Oñate-Valdivieso & Priscilla Massa-Sánchez & Pablo Ochoa-Cueva, 2021. "Establishment of the Baseline for the IWRM in the Ecuadorian Andean Basins: Land Use Change, Water Recharge, Meteorological Forecast and Hydrological Modeling," Land, MDPI, vol. 10(5), pages 1-18, May.
    4. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Fontanet, Mireia & Scudiero, Elia & Skaggs, Todd H. & Fernàndez-Garcia, Daniel & Ferrer, Francesc & Rodrigo, Gema & Bellvert, Joaquim, 2020. "Dynamic Management Zones for Irrigation Scheduling," Agricultural Water Management, Elsevier, vol. 238(C).
    6. Yousaf, Wasif & Awan, Wakas Karim & Kamran, Muhammad & Ahmad, Sajid Rashid & Bodla, Habib Ullah & Riaz, Mohammad & Umar, Muhammad & Chohan, Khurram, 2021. "A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    8. Fuentes, Ignacio & Vervoort, R. Willem & McPhee, James & Rojas, Luis A. Reyes, 2024. "Agricultural water accounting: Complementing a governance monitoring schema with remote sensing calculations at different scales," Agricultural Water Management, Elsevier, vol. 292(C).
    9. Hamze, Mohamad & Cheviron, Bruno & Baghdadi, Nicolas & Lo, Madiop & Courault, Dominique & Zribi, Mehrez, 2023. "Detection of irrigation dates and amounts on maize plots from the integration of Sentinel-2 derived Leaf Area Index values in the Optirrig crop model," Agricultural Water Management, Elsevier, vol. 283(C).
    10. Jeffrey Vervloesem & Ernesto Marcheggiani & MD Abdul Mueed Choudhury & Bart Muys, 2022. "Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity," Sustainability, MDPI, vol. 14(12), pages 1-31, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:757-:d:1106633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.