IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p569-d1081399.html
   My bibliography  Save this article

Phytostimulator Application after Cold Stress for Better Maize ( Zea mays L.) Plant Recovery

Author

Listed:
  • Karolina Ratajczak

    (Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland)

  • Hanna Sulewska

    (Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland)

  • Katarzyna Panasiewicz

    (Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland)

  • Agnieszka Faligowska

    (Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland)

  • Grażyna Szymańska

    (Department of Agronomy, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland)

Abstract

Phytostimulators are attracting considerable attention for replacing mineral fertilizers, which are of environmental concern, being especially forbidden in organic farming. The benefit of applying such products based on microorganisms (e.g., algae extract) or minerals of nano-meter-sized particle (e.g., nanofertilizers) is that plants can uptake them faster than soil fertilizers, targeting plant growth by regulating their phytohormones, as well as improving plant tolerance to unfavorable environmental conditions (e.g., cold stress). The aim of this study was to test and evaluate the effects of three commercial phytostimulators, called biostimulants (a seaweed-based extract—Kelpak ® , mineral nanoparticles—Nano Active ® , zinc nanoparticles—Dynamic Cresco ® ) on yield, chlorophyll content, level of CO 2 assimilation and the effectiveness of PSII under cold stress. The values of all chlorophyll fluorescence and photosynthetic parameters significantly decreased under cold, which indicated a strong inhibition of light-phase photosynthesis in maize leaves. Predicted by the regression analysis minimum, 20 days was enough for maize plants to recover from the inhibition caused by stress damages in their photosynthetic apparatus. At the final measurement in maize growth stage BBCH 65, all the tested phytostimulators showed significant effects in increased values of effective quantum yield of photosystem II, maximum photosynthetic efficiency of PSII and electron transport rate. At this stage, Dynamic Cresco ® and Nano Active ® treatment significantly increased the value of maximum net photosynthetic rate (15.37% and 18.85%, respectively) and leaf chlorophyll content (7.8% and 8.7%, respectively). The application of Dynamic Cresco ® significantly promoted total dry weight by 43.4% in comparison to control under stress growth conditions with cold. These phytostimulators can be used to enhance yield and physiological status of plants after abiotic stress (such as cold) to improve crop productivity, especially in organic farming.

Suggested Citation

  • Karolina Ratajczak & Hanna Sulewska & Katarzyna Panasiewicz & Agnieszka Faligowska & Grażyna Szymańska, 2023. "Phytostimulator Application after Cold Stress for Better Maize ( Zea mays L.) Plant Recovery," Agriculture, MDPI, vol. 13(3), pages 1-17, February.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:569-:d:1081399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylvie Bonny, 2017. "Corporate Concentration and Technological Change in the Global Seed Industry," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    2. Lauren Brzozowski & Michael Mazourek, 2018. "A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    3. Jarosław Pobereżny & Małgorzata Szczepanek & Elżbieta Wszelaczyńska & Piotr Prus, 2020. "The Quality of Carrot after Field Biostimulant Application and after Storage," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
    4. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jolanta Kowalska & Kinga Matysiak, 2023. "Advances in Crop Protection in Organic Farming System," Agriculture, MDPI, vol. 13(10), pages 1-5, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahboobe Ghobadi & Mahdi Gheysari & Mohammad Shayannejad & Hamze Dokoohaki, 2023. "Analyzing the Effects of Planting Date on the Uncertainty of CERES-Maize and Its Potential to Reduce Yield Gap in Arid and Mediterranean Climates," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    2. Singh, Ajay Kumar & Ashraf, Shah Nawaz & Sharma, Sandeep Kumar, 2023. "Farmer’s Perception on Climatic Factors and Social-economic Characteristics in the Agricultural Sector of Gujarat," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(1), March.
    3. Lea Primožič & Andreja Kutnar, 2022. "Sustainability Communication in Global Consumer Brands," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    4. Sanjeev Kumar & Ajay K. Singh, 2023. "Modeling the effects of climate change on agricultural productivity: evidence from Himachal Pradesh, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 521-548, June.
    5. Shobande, Olatunji A. & Asongu, Simplice A., 2022. "The Critical Role of Education and ICT in Promoting Environmental Sustainability in Eastern and Southern Africa: A Panel VAR Approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    6. Katarzyna Kocur-Bera & Anna Lyjak, 2021. "Analysis of Changes in Agricultural Use of Land After Poland’s Accession to the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 517-533.
    7. Kliem, Lea & Sagebiel, Julian, 2023. "Consumers' preferences for commons-based and open-source produce: A discrete choice experiment with directional information manipulations," Food Policy, Elsevier, vol. 119(C).
    8. Sayamol Charoenratana & Cholnapa Anukul & Peter M. Rosset, 2021. "Food Sovereignty and Food Security: Livelihood Strategies Pursued by Farmers during the Maize Monoculture Boom in Northern Thailand," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    9. Rohe, Sebastian & Oltmer, Marie & Wolter, Hendrik & Gmeiner, Nina & Tschersich , Julia, 2022. "Forever Niche: Why do organic vegetable varieties not diffuse?," Papers in Innovation Studies 2022/8, Lund University, CIRCLE - Centre for Innovation Research.
    10. Grazia Trebbi & Lorenzo Negri & Sara Bosi & Giovanni Dinelli & Riccardo Cozzo & Ilaria Marotti, 2020. "Evaluation of Equisetum arvense (Horsetail Macerate) as a Copper Substitute for Pathogen Management in Field-Grown Organic Tomato and Durum Wheat Cultivations," Agriculture, MDPI, vol. 11(1), pages 1-14, December.
    11. Antonio Valente & Carlos Costa & Leonor Pereira & Bruno Soares & José Lima & Salviano Soares, 2022. "A LoRaWAN IoT System for Smart Agriculture for Vine Water Status Determination," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    12. Dae-Ho Jung & Jung-Eek Son, 2021. "CO 2 Utilization Strategy for Sustainable Cultivation of Mushrooms and Lettuces," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
    13. Peres Ofori, 2021. "Mortgage market and climate variability adaptation: evidence from the mortgage market in emerging cities," SN Business & Economics, Springer, vol. 1(12), pages 1-22, December.
    14. Denghao Pang & Hong Wang & Peng Chen & Dong Liang, 2022. "Spider Mites Detection in Wheat Field Based on an Improved RetinaNet," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    15. Marin, Anabel & Stubrin, Lilia & van Zwanenberg, Patrick, 2023. "Technological lock-in in action: Appraisal and policy commitment in Argentina's seed sector," Research Policy, Elsevier, vol. 52(2).
    16. Saxena, Raka & Pant, Devesh Kumar & Pant, Satish Chandra & Singh, Reeta, 2023. "Mapping the Global Research Landscape: Bibliometric Analysis of Agri-food Systems and Nutritional Security," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 0(Number 3), September.
    17. Marius Mihai Micu & Toma Adrian Dinu & Gina Fintineru & Valentina Constanta Tudor & Elena Stoian & Eduard Alexandru Dumitru & Paula Stoicea & Adina Iorga, 2022. "Climate Change—Between “Myth and Truth” in Romanian Farmers’ Perception," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    18. Taifeng Yang & Xuetao Huang & Yue Wang & Houjian Li & Lili Guo, 2022. "Dynamic Linkages among Climate Change, Mechanization and Agricultural Carbon Emissions in Rural China," IJERPH, MDPI, vol. 19(21), pages 1-24, November.
    19. Richard D. Smart & Amer Ait Sidhoum & Johannes Sauer, 2022. "Decomposition of efficiency in the global seed industry: A nonparametric approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2133-2147, September.
    20. Carotti, Laura & Pistillo, Alessandro & Zauli, Ilaria & Meneghello, Davide & Martin, Michael & Pennisi, Giuseppina & Gianquinto, Giorgio & Orsini, Francesco, 2023. "Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation," Agricultural Water Management, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:569-:d:1081399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.