IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i11p2054-d1268223.html
   My bibliography  Save this article

The Breeding of Waxy Sorghum Using Traditional Three-Line Method and Marker-Assisted Selection

Author

Listed:
  • Yong-Pei Wu

    (Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Ministry of Agriculture, Chiayi City 60015, Taiwan)

  • Yu-Chi Chang

    (Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Ministry of Agriculture, Chiayi City 60015, Taiwan)

  • Su-Chen Kuo

    (Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Ministry of Agriculture, Chiayi City 60015, Taiwan)

  • Dah-Jing Liao

    (Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Ministry of Agriculture, Chiayi City 60015, Taiwan)

  • Ting-Yu Shen

    (Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Ministry of Agriculture, Chiayi City 60015, Taiwan)

  • Hsin-I Kuo

    (Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Ministry of Agriculture, Chiayi City 60015, Taiwan
    Department of Agronomy, National Chiayi University, Chiayi City 60004, Taiwan)

  • Sheng-Wen Wang

    (Department of Agronomy, National Chiayi University, Chiayi City 60004, Taiwan)

  • Yu-Chien Tseng

    (Department of Agronomy, National Chiayi University, Chiayi City 60004, Taiwan)

Abstract

Sorghum ( Sorghum bicolor ) exhibits drought resistance and environmental adaptability, making it a crucial cereal crop for semi-arid regions. It has a wide range of uses, including as food, feed, brooms, alcohol production, and bioethanol. In particular, Taiwan imports nearly 50,000 tons of sorghum annually, primarily for the production of sorghum liquor. However, the ideal raw material for high-quality sorghum liquor is waxy sorghum, and not all sorghum varieties imported or promoted in Taiwan are of this waxy type. Consequently, there is a shortage of sufficient waxy sorghum raw materials to meet the demands of the Taiwan market. The occurrence of waxy sorghum ( wx ) is caused by the mutation of granule-bound starch synthase I (GBBS I), and there are currently several known types of mutants, carrying different wx a , wx b , and wx c waxy alleles. Among them, wx c is a novel mutation type, and in native sorghum in Taiwan, individuals with the waxy allele wx c have been found. The three-line method is a commonly used breeding strategy, which simplifies the process of emasculation to obtain hybrid F 1 offspring. In this study, imported sorghum variety Liangnuo No.1 (with male sterility), native glutinous sorghum variety SB6 from Taiwan (carrying the wx c waxy allele), and sorghum reference genome variety BTx623 were used as research materials. The goal was to use the three-line method to produce waxy sorghums, including the male sterile line (A-line), male sterile maintenance line (B-line), and fertility-restoring line (R-line). The breeding results showed that by using backcross breeding, molecular-assisted selection, and traditional field selection methods, high-quality three-line materials (A-, B-, R-lines, named CNA1, CNB1 CNR1, respectively) and F 1 hybrid (CNH1) with favorable agronomic traits and yield quality were successfully obtained.

Suggested Citation

  • Yong-Pei Wu & Yu-Chi Chang & Su-Chen Kuo & Dah-Jing Liao & Ting-Yu Shen & Hsin-I Kuo & Sheng-Wen Wang & Yu-Chien Tseng, 2023. "The Breeding of Waxy Sorghum Using Traditional Three-Line Method and Marker-Assisted Selection," Agriculture, MDPI, vol. 13(11), pages 1-14, October.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2054-:d:1268223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/11/2054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/11/2054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew H. Paterson & John E. Bowers & Rémy Bruggmann & Inna Dubchak & Jane Grimwood & Heidrun Gundlach & Georg Haberer & Uffe Hellsten & Therese Mitros & Alexander Poliakov & Jeremy Schmutz & Manuel S, 2009. "The Sorghum bicolor genome and the diversification of grasses," Nature, Nature, vol. 457(7229), pages 551-556, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    2. Taikui Zhang & Weichen Huang & Lin Zhang & De-Zhu Li & Ji Qi & Hong Ma, 2024. "Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    3. Veronika DUMALASOVÁ & Leona SVOBODOVÁ & Alena HANZALOVÁ, 2012. "Differentially expressed gene transcripts in wheat and barley leaves upon leaf spot infection," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 48(3), pages 108-119.
    4. Peng Xie & Sanyuan Tang & Chengxuan Chen & Huili Zhang & Feifei Yu & Chao Li & Huimin Wei & Yi Sui & Chuanyin Wu & Xianmin Diao & Yaorong Wu & Qi Xie, 2022. "Natural variation in Glume Coverage 1 causes naked grains in sorghum," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Liang Ma & Ke-Wei Liu & Zhen Li & Yu-Yun Hsiao & Yiying Qi & Tao Fu & Guang-Da Tang & Diyang Zhang & Wei-Hong Sun & Ding-Kun Liu & Yuanyuan Li & Gui-Zhen Chen & Xue-Die Liu & Xing-Yu Liao & Yu-Ting Ji, 2023. "Diploid and tetraploid genomes of Acorus and the evolution of monocots," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Hongzeng Fan & Jibin Wang & Songhao Shen & Mingchong Yang & Suli Li & Bihong Feng & Ruimin Zhong & Chongjian Ma & Jihong Wang & Ruohan Xie & Lingqiang Wang, 2022. "High-Throughput Phenotyping of Cross-Sectional Morphology to Assess Stalk Mechanical Properties in Sorghum," Agriculture, MDPI, vol. 12(10), pages 1-13, October.
    7. Md. S. Islam & Per McCord & Quentin D. Read & Lifang Qin & Alexander E. Lipka & Sushma Sood & James Todd & Marcus Olatoye, 2022. "Accuracy of Genomic Prediction of Yield and Sugar Traits in Saccharum spp. Hybrids," Agriculture, MDPI, vol. 12(9), pages 1-22, September.
    8. Theivanayagam Maharajan & Thumadath Palayullaparambil Ajeesh Krishna & Neenthamadathil Mohandas Krishnakumar & Mani Vetriventhan & Himabindu Kudapa & Stanislaus Antony Ceasar, 2024. "Role of Genome Sequences of Major and Minor Millets in Strengthening Food and Nutritional Security for Future Generations," Agriculture, MDPI, vol. 14(5), pages 1-28, April.
    9. Katrien M. Devos & Peng Qi & Bochra A. Bahri & Davis M. Gimode & Katharine Jenike & Samuel J. Manthi & Dagnachew Lule & Thomas Lux & Liliam Martinez-Bello & Thomas H. Pendergast & Chris Plott & Dipnar, 2023. "Genome analyses reveal population structure and a purple stigma color gene candidate in finger millet," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:11:p:2054-:d:1268223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.