IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p1912-d1250809.html
   My bibliography  Save this article

Identifying Critical Drivers of Mango, Tomato, and Maize Postharvest Losses (PHL) in Low-Income Countries and Predicting Their Impact

Author

Listed:
  • Hory Chikez

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

  • Dirk Maier

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

  • Sigurdur Olafsson

    (Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA)

  • Steve Sonka

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
    Ed Snider Center for Enterprise and Markets, University of Maryland, College Park, MD 20742, USA)

Abstract

Several studies have identified a host of factors to be considered when attempting to reduce food postharvest loss (PHL). However, very few studies have ranked those factors by their importance in driving PHL. This study used the Random Forest model to rank the critical drivers of PHL in maize, mango, and tomato, cultivated in Tanzania, Kenya, and Nigeria, respectively. The study then predicted the maize, mango, and tomato PHLs by changing the levels of the most critical drivers of PHL and the number of farmers at each level. The results indicate that the most critical drivers of PHL consist of pre-harvest and harvest variables in the field, such as the quantity of maize harvested in the maize value chain, the method used to know when to begin mango harvest, and the type of pest that attacks plants in the tomato value chain. Furthermore, changes in the levels of a critical driver and changes in the number of smallholder farmers at a given level both have an impact on PHL, although the impact of the former is much higher than the latter. This study also revealed that the critical drivers of PHL can be categorized as either passive and difficult to manipulate, such as the geographic area within which a smallholder farmer lives, or active and easier to control, such as services provided by the Rockefeller Foundation YieldWise Initiative. Moreover, the affiliation of smallholder farmers to the YieldWise Initiative and a smallholder farmer’s geographic location are ubiquitous critical drivers across all three value chains. Finally, an online dashboard was created to allow users to explore further the relationship between several critical drivers, the PHL of each crop, and a desired number of smallholder farmers.

Suggested Citation

  • Hory Chikez & Dirk Maier & Sigurdur Olafsson & Steve Sonka, 2023. "Identifying Critical Drivers of Mango, Tomato, and Maize Postharvest Losses (PHL) in Low-Income Countries and Predicting Their Impact," Agriculture, MDPI, vol. 13(10), pages 1-27, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1912-:d:1250809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/1912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/1912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hua Xie & Nicostrato Perez & Weston Anderson & Claudia Ringler & Liangzhi You, 2018. "Can Sub-Saharan Africa feed itself? The role of irrigation development in the region’s drylands for food security," Water International, Taylor & Francis Journals, vol. 43(6), pages 796-814, August.
    2. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    3. Hory Chikez & Dirk Maier & Steve Sonka, 2021. "Mango Postharvest Technologies: An Observational Study of the Yieldwise Initiative in Kenya," Agriculture, MDPI, vol. 11(7), pages 1-16, July.
    4. Tanya Stathers & Deirdre Holcroft & Lisa Kitinoja & Brighton M. Mvumi & Alicia English & Oluwatoba Omotilewa & Megan Kocher & Jessica Ault & Maximo Torero, 2020. "A scoping review of interventions for crop postharvest loss reduction in sub-Saharan Africa and South Asia," Nature Sustainability, Nature, vol. 3(10), pages 821-835, October.
    5. Charity M. Wangithi & Beatrice W. Muriithi & Raphael Belmin, 2021. "Adoption and Dis-Adoption of Sustainable Agriculture: A Case of Farmers’ Innovations and Integrated Fruit Fly Management in Kenya," Agriculture, MDPI, vol. 11(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hory Chikez & Dirk Maier & Steve Sonka, 2021. "Mango Postharvest Technologies: An Observational Study of the Yieldwise Initiative in Kenya," Agriculture, MDPI, vol. 11(7), pages 1-16, July.
    2. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    3. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    6. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    7. Ruben, Ruerd & Cavatassi, Romina & Lipper, Leslie & Smaling, Eric & Winter, Paul, 2022. "Research Series 67: Towards food systems transformation – five paradigm shifts for healthy, inclusive and sustainable food systems," IFAD Research Series 320667, International Fund for Agricultural Development (IFAD).
    8. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    9. Akoko, Peter Obuon & Gathungu, Edith & De Groote, Hugo, 2024. "Evaluating Smallholder Farmers’ Willingness to Pay for Improved Maize Dryers in Njoro Sub-County, Nakuru, Kenya," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344279, International Association of Agricultural Economists (IAAE).
    10. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    11. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    12. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    13. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    15. van Berkum, Siemen, 2022. "IFAD Research Series 77: The role of trade and policies in improving food security," IFAD Research Series 321997, International Fund for Agricultural Development (IFAD).
    16. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    17. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    18. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    19. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    20. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1912-:d:1250809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.